

Apple IIGS Toolbox Changes

for System Software 6.0
(ERS version 2.5)

by David A. Lyons
February 26, 1992

System 6.0 Toolbox 2 29/10/y

TABLE OF CONTENTS

ABOUT THIS DOCUMENT ... 3
REVISION HISTORY ... 3
Taking Advantage of New System 6.0 Toolbox Features .. 4
New Resource Types .. 5
Additions to Sys.Resources .. 7
009 Apple Desktop Bus Update ... 9
029 Audio Compression and Expansion Update .. 9
016 Control Manager Update ... 11
005 Desk Manager Update ... 24
021 Dialog Manager Update ... 33
006 Event Manager Update .. 34
027 Font Manager Update .. 35
011 Integer Math Update .. 36
020 Line Edit Update .. 37
028 List Manager Update ... 38
038 Media Controller .. 44
002 Memory Manager Update .. 45
015 Menu Manager Update .. 47
032 MIDI Tools Update .. 61
003 Miscellaneous Tools Update .. 62
026 Note Sequencer Update ... 79
025 Note Synthesizer Update ... 79
019 Print Manager Update .. 79
004 QuickDraw II Update .. 80
018 QuickDraw II Auxiliary Update .. 83
030 Resource Manager Update ... 91
010 SANE Update .. 100
007 Scheduler Update ... 101
022 Scrap Manager Update .. 102
008 Sound Tools Update .. 104
023 Standard File Update ... 105
034 Text Edit Update .. 107
012 Text Tools Update ... 108
001 Tool Locator Update .. 109
033 Video Overlay Update ... 121
014 Window Manager Update .. 122
Appendix A—ToStrip and ToBusyStrip vectors .. 143
Appendix B—Battery RAM Use .. 144

System 6.0 Toolbox 3 29/10/y

ABOUT THIS DOCUMENT

This document describes enhancements to the Apple IIGS toolbox for System Software
6.0.

REVISION HISTORY

17..26-Feb-92 Cleaned up for final release. Incorporated changes from

6.0d53 through 6.0d75.

System 6.0 Toolbox 4 29/10/y

Taking Advantage of New System 6.0 Toolbox Features

Some System 6.0 toolbox features are “free”—they automatically work without requiring
any change to your application. AlertWindow is one example. You automatically
gain keyboard control with System 6.0.

Smooth application launching is another free feature. If your desktop application’s
auxiliary type bits are set as specified in Apple II File Type Note $B3 and you use
StartUpTools and ShutDownTools, the user sees a smooth transition from the
Finder (for example) to your application and back.

Other features are not automatic, but you can take advantage of them by making small
changes to your application.

For example, adding a call to HandleDiskInsert in your main event loop makes
your application automatically recognize disks as they are inserted, giving the user a
chance to format them if necessary (see HandleDiskInsert in the Window Manager
chapter).

Also, if you have any extended List controls, providing keyboard navigation through the
lists is often as simple as turning on some bits in the controls’ moreFlags fields (see
Control Manager and List Manager).

System 6.0 Toolbox 5 29/10/y

New Resource Types

New resource types defined for System Software 6.0 and HyperCard IIGS 1.1 are listed
below. For information on other resource types defined by Apple, see:
 • Apple IIGS Toolbox Reference, Volume 3
 • Apple IIGS Technical Note #76, Miscellaneous Resource Formats
 • HyperCard IIGS Script Language Guide

$801B rFileType

For your convenience, rFileType resources are defined as having the same format as
Filetype Descriptor files (see Apple II File Type Note $42). There is no direct support in
the system for resources of this type.

$8028 rItemStruct

Supports menu items with icons attached. See the Menu Manager chapter.

$8029 rVersion

Any file with an Apple IIGS-format resource fork can have an rVersion resource with
ID=1. The Finder displays this information in Icon Info windows.

rVersion format:
+000: Version Number (see format below)
+004: Country Code (0=USA)
+006: Pascal String giving name of product (may be empty)
+xxx: Pascal String giving additional info, like a copyright notice (may be empty)

Version Number Format

The version number format is as described in Macintosh Technical Note #189, Version
Territory, except that the bytes are in least-significant-first order and we have a “final”
stage before the actual “release” stage. (Note: It is incorrect to have a nonzero release
field when the stage is “released.”)

An important property of Version longwords is that you can do an unsigned long
comparison to see which version is later.

System 6.0 Toolbox 6 29/10/y

Version = 32 bits:

bit 31 |M|M|M|M|M|M|M|M|m|m|m|m|b|b|b|b|s|s|s|0|0|0|0|0|r|r|r|r|r|r|r|r| bit
0

 | | |

 M = major version (2 digits, BCD)
 m = minor version
 b = bug version
 s = stage (001=development, 010=alpha, 011=beta, 100=final,
101=released)
 r = release (2 digits, BCD)

Examples:

$06002021 = 6.0d21
$1234A000 = 12.3.4
$05042002 = 5.0.4d2
$01234001 = 1.2.3a1
$01236099 = 1.2.3b99
$01008001 = 1.0f1

$802A rComment

An rComment resource consists of unformatted text. Any file with an Apple IIGS-
format resource fork can have an rComment resource with ID=1 containing information
about the file. The Finder displays this text and lets the user edit it.

The Finder displays a file’s rComment(2) resource if it can’t be launched. This text can
explain, for example, what the file is for (for files that aren’t intended to be launched), or
what application created it.

All other resource IDs within rComment are reserved for future definition by Apple.

$802B rBundle

This is defined by Finder 6.0.

$802C rFinderPath

This is defined by Finder 6.0.

$802D rPaletteWindow

Used by HyperCard IIGS 1.1.

System 6.0 Toolbox 7 29/10/y

$802E rTaggedStrings

An rTaggedStrings resource contains a number of <Word, Pascal String> pairs.

/*------------------------- rTaggedStrings ---------------------------------*/

type rTaggedStrings {
 integer = $$Countof(StringArray);
 array StringArray {
 hex integer; /* Key integer */
 pstring; /* String */
 };
};

$802F rPatternList

An rPatternList resource contains zero or more QuickDraw II patterns. (This type
is defined for your convenience; the toolbox does not use it directly.)

/*------------------------- rPatternList -----------------------------------*/

type rPatternList {
 array {
 array[32] {
 hex byte;
 };
 };
};

Additions to Sys.Resources

Added new rCtlDefProc resources—see the Control Manager chapter.

Added some rIcon (type = $8001) resources (for convenience, some of them have
resource names):

$07FF0058 640-mode “X” icon to overlay ShowBootInfo icons
$07FF0002 640-mode Stop icon (name = “Stop”)
$07FF0003 640-mode Note icon (name = “Note”)
$07FF0004 640-mode Caution icon (name = “Caution”)
$07FF0005 640-mode Disk icon (name = “Disk”)
$07FF0006 640-mode Disk Swap icon (name = “Disk Swap”)
$07FF0102 320-mode Stop icon
$07FF0103 320-mode Note icon
$07FF0104 320-mode Caution icon
$07FF0105 320-mode Disk icon
$07FF0106 320-mode Disk Swap icon

Added some rCursor (type = $8027) resources:

System 6.0 Toolbox 8 29/10/y

$07FF0001 640-mode I-Beam cursor
$07FF0002 640-mode Cross cursor
$07FF0003 640-mode Plus cursor
$07FF0101 320-mode I-Beam cursor
$07FF0102 320-mode Cross cursor
$07FF0103 320-mode Plus cursor

Added new rErrorString (type = $8020) resources for ErrorWindow:

$07FF006A = “Generic FST error ($6A).”
$07FF0042 = “Cannot open file. Too many files are open on the server.” (Stop

icon)
$07FF0096 = “GS/OS can’t read this disk (in device *0). Do you want to

initialize it?” Eject/Initialize (Caution icon)
$07FF0097 = “GS/OS does not recognize the file system on this disk (in

device *0). Do you want to initialize it?” Eject/Initialize
(Caution icon)

$07FF0098 = “Font size must be a number from 1 to 255.” Continue (Stop
icon)

$07FF0099 = “The disk could not be formatted. (blank line) 800K disks can’t
be formatted as 1440K, and 1440K disks can’t be formatted
as 800K.” Continue (Stop icon)

Most rErrorString resources now use Stop or Caution icons, and they use a
Continue button rather than an OK button. From the user’s point of view, things are
definitely not OK when one of these errors occurs!

Added one rWindColor (type = $8010) resource:
 $07FF0001 black-and-white lined-pattern title bar

Added an rVersion (type = $8029) ID=1 resource for the System Software version.
Product name = “System”, string2 = “Copyright 1983-1992, Apple Computer, Inc.”

System 6.0 Toolbox 9 29/10/y

009 Apple Desktop Bus Update

For ROM 1, ADBVersion now returns version 3.0 for consistency with ROM 3. There
are no other changes.

029 Audio Compression and Expansion Update

New Audio Compression and Expansion Calls

Added two new calls for dealing with pieces of sounds. These calls are useful when
working with AIFF-C files.

GetACEExpState $0D1D

Parameters

Stack before call

Previous contents
theBuffer

 <—SP

Stack after call

Previous contents
 <—SP

Errors $1D03 aceNotActive

C extern pascal void GetACEExpState(theBuffer);
 Ptr theBuffer;

The buffer is 16 bytes long. Currently only the first 4 bytes are used, and the last 12 are
returned as zero.

By setting the Expansion State appropriately, you can pick up an expansion part-way
through some compressed sound data.

System 6.0 Toolbox 10 29/10/y

SetACEExpState $0E1D

Parameters

Stack before call

Previous contents
theBuffer

 <—SP

Stack after call

Previous contents
 <—SP

Errors $1D03 aceNotActive

C extern pascal void SetACEExpState(theBuffer);
 Ptr theBuffer;

The buffer is 16 bytes long. Currently only the first 4 bytes are used, and the last 12 are
returned as zero.

By setting the Expansion State appropriately, you can pick up an expansion part-way
through some compressed sound data.

System 6.0 Toolbox 11 29/10/y

016 Control Manager Update

New Features of the Control Manager

New Control Types

Thermometer controls and Rectangle controls are described below.

Pop-Up Menu Controls

For enhancements to Pop-Up Menu controls, see the Menu Manager chapter.

Edit Line Controls

The parameter count in an edit line control template can now be 8 or 9 (previously, 8 was
the only valid value). If the paramter count is 9, the edit line is “password” style, and 9th
parameter is a one-word field giving the password character to display for each character
entered.

Icon Button Controls

Bit 3 of the Icon Button Flags parameter makes the button not track or return hits when
you click in it.

List Controls

To get the full functionality of the memNever bit (bit 5 of the member flags) in an item
in a list control, you must set the testMemNever bit (bit 6) in the List Control’s
ctlFlag field. (This has been true since System Software 5.0.)

Scroll Bar Controls

If your program changes color tables, it is best to change them before creating controls
that will be used while those color tables are active. For example, scroll bar controls
examine the current color tables looking for a suitable gray pattern for the page regions.
The old checkerboard pattern is used if no suitable gray is available.

If you change color tables while scroll bars already exist, you should call CtlNewRes so
the Control Manager has a chance to notice and use an appropriate gray or checkerboard
pattern for any scroll bars that exist.

Scroll bars use WaitUntil in the Miscellaneous Tools to limit the scrolling speed to 15
control value changes per second.

System 6.0 Toolbox 12 29/10/y

Static Text Controls

Setting bit 2 (value $0004, fBlastText) in the ctlFlag field of a static text control
makes the control draw much faster but puts the following restrictions on the control:
•No string substitutions are performed
•No imbedded formatting characters are allowed
•No word wrapping is attempted
•The control is not clipped to its bounding rectangle, so you need to be sure the text fits
•The system does not erase the unused part of the control rectangle for you, as it does
when you do not set this bit.

Setting bit 3 (value $0008, fTextCanDim) in the ctlFlag field of a static text control
makes the text gray out when the control is inactive (either because its hilite value is
$00FF, or because the window is inactive). Setting fTextCanDim is not
recommended for large amounts of text, because system draws the text normally before
graying it out. It’s okay to use fTextCanDim in conjunction with fBlastText.

Resource-based Controls

Since LoadResource now re-locks handles, one section of Apple IIGS Technical Note
#81 is now obsolete. Custom control defprocs no longer need to worry about getting
called while their code is purgeable.

HiliteControl

HiliteControl now uses WaitUntil in the Miscellaneous Tools to limit how fast a
control can blink on and off. (When HiliteControl sets the hilite state of the most-
recently-hilited control to zero, it enforces a minimum wait of 4 ticks since the first
hilite.)

SendEventToCtl

SendEventToCtl used to offer events to all extended controls. Now it ignores
controls that are invisible.

MakeNextCtlTarget

MakeNextCtlTarget is responsible for cycling to the next targetable control when
the user hits Tab. If the Command key is down, MakeNextCtlTarget now cycles in
the opposite direction.

(If you have written a targetable custom control, you should call
MakeNextCtlTarget for Command-Tab as well as Tab, if you aren’t already doing
so.)

System 6.0 Toolbox 13 29/10/y

NIL Window Pointers

Several calls let you pass NIL to act on the front window. These include
GetCtlHandleFromID, SendEventToCtl, NotifyCtls, FindCursorCtl (in
the Window Manager), FindRadioButton, GetLETextByID, and
SetLETextByID.

MakeNextCtlTarget always acts on the front window.

System 6.0 Toolbox 14 29/10/y

New Control type: Rectangle

The Rectangle control defproc is resource ID $07FF0003 in Sys.Resources.

One use for the Rectangle control is to draw boxes around groups of related controls.
You can detect mouse clicks within a Rectangle control if you want, but typically you
will set the hilite value to $FF to disable hit testing.

You may want to punch some some text through the top of the rectangle. Just make sure
your text control appears earlier than the Rectangle control in your control list. Since
controls are drawn in the order opposite from how they were created, the rectangle will
draw first, and then the text will punch a hole in the rectangle.

By the way, if you make the height or width of the rectangle very small (but not zero!),
you can use the Rectangle Control to put horizontal or vertical lines in your windows.

Rectangle control template:

 |-----------------|
$00 | pCount | Word—parameter count (6, 8, 9, or 10)
 |-----------------|
$02 | ID | Long–Application-assigned control ID
 |-----------------|
$06 | rect | Rect–boundary rectangle for control
 |-----------------|
$0E | procRef | Long–Rectangle control = $87FF0003
 |-----------------|
$12 | flag | Word–flags (see below)
 |-----------------|
$14 | moreFlags | Word–additional control flags (see below)
 |-----------------|
$16 | refCon | Long–application-assigned constant
 |-----------------|
$1A | penHeight | *Word–pen height
 |-----------------|
$1C | penWidth | *Word–pen width in 640-mode pixels
 |-----------------|
$1E | penMask | *8 bytes–pen mask to draw rectangle with
 |-----------------|
$26 | penPattern | *32 bytes–pen pattern to draw rectangle with
 |-----------------|

flag:

bit 7: 1= invisible
bits 1-0: 00=transparent control (doesn’t draw anything, but can still do hit

testing)
 01=gray pattern
 10=black pattern
 11=reserved

System 6.0 Toolbox 15 29/10/y

moreFlags fCtlTarget, bit 15: must be 0
 fCtlCanBeTarget, bit 14: must be 0
 fCtlWantEvent, bit 13: must be 0
 fCtlProcRefNotPtr, bit 12: must be 1
 fCtlTellAboutSize, bit 11: must be 0
 fCtlIsMultiPart, bit 10: must be 0
 bits 9-0: reserved, must be 0

The default pen height is 1. The default pen width is 2 640-mode pixels. The pen width
is always cut in half for 320 mode. You should include or omit the penHeight and
penWidth parameters as a group (a parameter count of 7 is invalid).

If you provide the penPattern parameter, it overrides the pattern specified in the flags
(but you should set the flags to 1 so it the control won’t be transparent).

System 6.0 Toolbox 16 29/10/y

New Control type: Thermometer

The Thermometer control defproc is resource ID $07FF0002 in Sys.Resources.

A thermometer control is a rectangle the gradually fills as an operation completes. At
convenient intervals, your application calls SetCtlValue on the thermometer control,
passing values from 0 up to the data value you pass in the template.

The default color table provides a white rectangle, outlined in black, which fills with red.
(A value of 0 is completely white, and a value equal to data is completely red.)

Thermometer control template:

 |-----------------|
$00 | pCount | Word—parameter count (8 or 9)
 |-----------------|
$02 | ID | Long–Application-assigned control ID
 |-----------------|
$06 | rect | Rect–boundary rectangle for control
 |-----------------|
$0E | procRef | Long–Thermometer control = $87FF0002
 |-----------------|
$12 | flag | Word–flags (see below)
 |-----------------|
$14 | moreFlags | Word–additional control flags (see below)
 |-----------------|
$16 | refCon | Long–application-assigned constant
 |-----------------|
$1A | value | Word–determines position of mercury
 |-----------------|
$1C | data | Word–determines scale
 |-----------------|
$20 | *colorTableRef | Long—color table reference
 |-----------------|

flag: bit 0: 0=vertical, 1=horizontal
 bits 1-15: reserved

moreFlags fCtlTarget, bit 15: must be 0
 fCtlCanBeTarget, bit 14: must be 0
 fCtlWantEvent, bit 13: must be 0
 fCtlProcRefNotPtr, bit 12: must be 1
 fCtlTellAboutSize, bit 11: must be 0
 fCtlIsMultiPart, bit 10: must be 0
 bits 9-2: reserved, must be 0
 Color table reference, bits 1-0: Defines type of reference in

colorTableRef : 00=pointer, 01=handle, 10=rCtlColorTbl
resource

The color table is 4 words long in this format:

$000w w is the outline color

System 6.0 Toolbox 17 29/10/y

$000x x is the interior color
$000y y is the foreground mercury color for a dotted pattern
$p00z z is the mercury color; p is 0 for solid, 8 for dotted pattern
 (that is, set bit 15 for a dotted mercury pattern)

The default color table is:

$0000 black outline
$000F white interior
$0000
$0004 solid red mercury

Note: GetCtlTitle and SetCtlTitle deal with the ctlData field of the control
record, so you can use them to examine and change the scale of a thermometer control
you have already created. Only the low word of the value is significant (the high word is
reserved).

System 6.0 Toolbox 18 29/10/y

New Control Manager Calls

FindRadioButton $3910

Note: FindRadioButton is very similar to the fmdWhichRadio call in the DTS

Libraries and Tools. See the section For fakeModalDialog Users earlier in this
chapter.

Returns a value indicating which radio button is selected in a given family. The value
returned is the low word of the selected radio button’s control ID minus the low word of
the lowest radio button control ID in the family.

For example, if four radio buttons are in a window with control ID values of $00013600,
$00013601, $00013602, and $0001360F, respectively, and the second radio button is
currently selected, FindRadioButton returns $0001 ($3601-$3600). If the fourth
radio button is selected, FindRadioButton returns $000F ($360F-$3600).

Parameters

Stack before call

Previous contents
Space

windPtr

famNum

 <—SP

Stack after call

Previous contents
radioNum

 <—SP

Errors none

C extern pascal unsigned int FindRadioButton(windPtr,famNum);
 WindowPtr windPtr;
 Word famNum;

windPtr Pointer to the window containing the radio buttons to check.

(FindRadioButton works with any window, not just windows used

System 6.0 Toolbox 19 29/10/y

with DoModalWindow.) You may pass NIL to work with the front
window.

famNum Family number of the radio buttons to check.

radioNum Calculated value indicating which radio button is selected in the indicated

family. If there is no active radio button in the specified family, radioNum
is $FFFF.

System 6.0 Toolbox 20 29/10/y

GetLETextByID $3B10

Note: GetLETextByID is very similar to the fmdLEGetText call in the DTS

Libraries and Tools. See the section For fakeModalDialog Users earlier in this
chapter.

Returns the text of an Edit Line control into a buffer supplied by the caller.

GetLETextByID saves you the trouble of calling GetCtlHandleFromID to get the
Edit Line control handle, retrieving the Line Edit record from the control (using
GetCtlTitle) and then making Line Edit tool calls to actually retrieve the text.

The text is returned with a length byte at the beginning and a zero byte at the end. You
can use the text as a Pascal-style string starting at the buffer’s beginning or as a C-style
string starting at the buffer’s second byte. Pascal strings of 256 bytes will have a length
byte of zero, but are still retrievable as C strings.

Important: GetLETextByID does no checking for buffer sizes; it simply assumes

that there is enough memory at the specified address to hold all the text
from the Edit Line control (the maximum number of characters possible in
the Edit Line control, plus the Pascal length byte and C terminating zero
byte).

 GetLETextByID also does no checking to insure that the control ID

specified belongs to an Edit Line control. Specifying the control ID of
anything other than an Edit Line control is a bad thing.

Parameters

Stack before call

Previous contents
windPtr

LECtlID

textPtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors Control Manager errors returned unchanged

System 6.0 Toolbox 21 29/10/y

C extern pascal void GetLETextByID(windPtr, LECtlID,
textPtr);
 WindowPtr windPtr;
 Long LECtlID;
 StringPtr textPtr;

windPtr Pointer to the window that contains the Edit Line control.

(GetLETextByID can be used to retrieve from any window, not just the
active one.) You may pass NIL to work with the front window.

LECtlID The control ID of the Edit Line control from which to retrive the text.

textPtr Pointer to a buffer where the text will be returned. The text is preceded by

a length byte and terminated by a zero byte.

Note: This call is in the Control Manager instead of Line Edit because it works with Edit

Line controls and not Line Edit records.

System 6.0 Toolbox 22 29/10/y

SetLETextByID $3A10

Note: SetLETextByID is very similar to the fmdLESetText call in the DTS

Libraries and Tools. See the section For fakeModalDialog Users earlier in this
chapter.

Sets the text of an Edit Line control to a string supplied by the caller, selects all of the
text, and invalidates the viewRect of the Line Edit record referenced in the control.
This normally causes the new text to be redrawn on the next update event.

SetLETextByID saves you the trouble of calling GetCtlHandleFromID to get the
Edit Line control handle, retrieving the Line Edit record from the control (using
GetCtlTitle) and then making Line Edit tool calls to actually set the text and the
selection.

Important: SetLETextByID does no checking to insure that the control ID

specified belongs to an Edit Line control. Specifying the control ID of
anything other than an Edit Line control is a bad thing.

Parameters

Stack before call

Previous contents
windPtr

LECtlID

textPtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors Control Manager errors returned unchanged

C extern pascal void SetLETextByID(windPtr, LECtlID,
textPtr);
 WindowPtr windPtr;
 Long LECtlID;
 StringPtr textPtr;

System 6.0 Toolbox 23 29/10/y

windPtr Pointer to the window that contains the Edit Line control to receive the
text. (SetLETextByID can be used to set text in any window, not just
the active one.) You may pass NIL to work with the front window.

LECtlID The control ID of the Edit Line control to receive the text.

textPtr Pointer to a Pascal-style string to be used as the text.

Note: This call is in the Control Manager instead of Line Edit because it works with Edit

Line controls and not Line Edit records.

System 6.0 Toolbox 24 29/10/y

005 Desk Manager Update

New Features of the Desk Manager

Classic Desk Accessory changes

•If bit 0 of battery-RAM location $5F is set, the Desk Manager sorts the CDA menu
alphabetically. However, Control Panel always remains at the top, and Quit
always remains at the bottom. (There is a check box in the General Control Panel to
enable and disable this feature. By default, sorting is enabled.)

•Typing a non-control key at the CDA menu moves the selection bar to the next CDA
name that begins with that character, if any. Upper and lowercase letters are considered
the same, and the search wraps around to the beginning. If you type a letter that no CDA
name starts with, the system calls SysBeep2($8008).

•The following keyboard shortcuts in the CDA menu are not new, but they were not
documented before: Command-up-arrow moves up one page of CDAs (or to the top);
Command-down-arrow moves down one page (or to the bottom); Esc moves to the Quit
item at the bottom.

•CDA names are now allowed to contain Control-N. Any part of the name following the
Control-N is displayed as normal text even when the CDA is hilited in inverse. (This
worked before System 5.0 but was not supported; now it works again and is supported.)

New Desk Accessory changes

•If bit 0 of battery-RAM location $5F is set, FixAppleMenu inserts NDA menu items
into the menu in alphabetical order.

•DeskStartUp checks to see if sufficient tools are already started up. If not, it returns
without doing anything.

•FixAppleMenu checks to see if the Desk Manager was successfully started. If not, it
tries to start it up again. (Some applications start tools in a poor order, and the
cooperation between DeskStartUp and FixAppleMenu solves many compatibility
problems—by the time the application calls FixAppleMenu, the proper tools have been
started.)

•A successful DeskStartUp calls SendRequest $0502,
systemSaysDeskStartUp; DeskShutDown calls SendRequest $0503,
systemSaysDeskShutDown (dataIn and dataOut are reserved). This gives any
part of the system a chance to take action at DeskStartUp or DeskShutDown time—
this was previously easy only for desk accessories.

System 6.0 Toolbox 25 29/10/y

•FixAppleMenu calls SendRequest $051E, systemSaysFixedAppleMenu
(dataIn and dataOut are reserved). At this point, it is possible for an NDA to add an
icon to its Apple-menu item, by calling SetMItemStruct and SetMItemIcon.
(The NDA needs to look in its own NDA header to determine what menu item ID it has
been assigned.)

•SystemEvent intercepts key-down and auto-key events for Command-W when a
System window is in front, and it calls CloseNDAByWinPtr on the front window.
NDAs and applications never see Command-W presses when a System window is in
front, and the user can always close an NDA by typing Command-W.

Note: Before SystemEvent calls CloseNDAByWinPtr on the system window to be

closed, it offers optionalCloseAction ($000B) to the NDA’s action
procedure (see CallDeskAcc). This gives the NDA a chance to ask the user if
they want to save changes, and even to abort the close operation. To tell
SystemEvent that everything is taken care of, the action procedure stores a
$0001 at the word pointed to by the data value passed.

•When SystemClick detects a click in a System window’s (frame) grow box, is calls
GrowWindow and normally enforces a minimum width of 78 and a minimum height of
34. If special minimum-width and minimum-height values are present in the window’s
auxiliary window information record, SystemClick uses those values instead (see
GetAuxWindInfo in the Window Manager chapter). SystemClick does not do
anything for grow box controls in a window’s content, as created by NewControl2.

•The qContent window frame bit now works for system windows. When
SystemClick detects a click in a system window that is not frontmost, it has always
called SelectWindow to bring it to the front. Now it continues by checking the
qContent bit in the window’s frame. If qContent is set, SystemClick processes
the click as if the window was already in front.

System 6.0 Toolbox 26 29/10/y

•The Desk Manager now knows how to handle System windows which were not returned
from any NDA’s Open procedure. If the window pointer is not found in the table of open
NDA windows, the Desk Manager calls GetAuxWindInfo and looks at offset +024 for
a pointer to an structure with the following format:

+000 Word status Use $0000 (reserved for the Desk Manager)
+002 Long openProc reserved (use 0)
+006 Long closeProc pointer to the NDA-style Close routine
+010 Long actionProc pointer to the NDA-style Action routine
+014 Long initProc reserved (use 0)
+018 Word period reserved (use 0)
+020 Word eventMask event mask, just like for an NDA
+022 Long lastServiced reserved (use 0)
+026 Long windowPtr reserved (use 0)
+030 Long ndaHandle reserved (use 0)
+034 Word memoryID Your memory ID (very important for resource-

app switching!)

This allows NDAs to have more than one (modeless) window. It also allows Finder
Extensions or other things other than NDAs to create system windows and handle events
in them.

CloseNDAbyWinPtr

CloseNDAbyWinPtr works for any system window, not just NDA windows.

When to use SetSysWindow

SetSysWindow marks a window as a “system window,” which dramatically changes
how the system handles events for that window.

When a system window is in front, many events are handled at a low level—during a
GetNextEvent call, SystemEvent takes the event and feeds it to the NDA or other
code responsible for that window.

If you are handling your window modally (your code keeps control until the window is
dismissed), do not call SetSysWindow.

SetSysWindow should only be used for non-application windows that remain open
while the application continues to run.

System 6.0 Toolbox 27 29/10/y

How to override SystemClick

You can now override any SystemClick features you don’t like (for your window
only). For example, if the user clicks on your system window’s zoom box, you may want
to toggle between two different window sizes without changing the window’s location;
the normal SystemClick response is to call TrackZoom and ZoomWindow, which
doesn’t do what you want.

Before SystemClick does anything else, it uses CallDeskAcc to send you a newly-
defined action code. If CallDeskAcc is unable to send you the new action code, or if
you decline to handle it, the SystemClick behaves as before. If you accept the action,
SystemClick exits, taking no further action.

The action code is sysClickAction, code 10 ($000A). The data value is a pointer to
the following structure:

 |-----------------|
+000 | result | Word—space for result
 |-----------------|
+002 | fwValue | Word—value returned from FindWindow
 |-----------------|
+004 | windowPtr | Long—window pointer
 |-----------------|
+008 | eventRecPtr | Long—event record pointer
 |-----------------|

The fwValue, windowPtr, and eventRecPtr fields are copies of the corresponding
SystemClick parameters (except that bit 15, indicating a system window, is already
masked off of fwValue for you).

If you handle the action, change the result field to $0001 (it is pre-zeroed for your
convenience), and SystemClick exits, taking no further action.

System 6.0 Toolbox 28 29/10/y

New Desk Manager Calls

CallDeskAcc $2405

CallDeskAcc calls a New Desk Accessory’s Action or Init routine with the specified
values. You can specify which NDA to call by index number or, if the NDA is open, by
window pointer.

Warning: Be careful passing events to a desk accessory that is not open. Most action

codes make sense only for an open desk accessory.

All undefined action codes are reserved for definition by Apple.

Parameters

Stack before call

Previous contents
Space

flags

daReference

action

data

 <—SP

Stack after call

Previous contents
result

 <—SP

Errors $0520 deskBadSelector selector out of range

C extern pascal Word CallDeskAcc(flags, daReference, action,

data);
 Word flags, action;
 Long daReference, data;

flags bit 15: 1 = reserved for calling a CDA
 0 = call an NDA
 bits 14-2: reserved (use 0)

System 6.0 Toolbox 29 29/10/y

 bit 1: 1 = call the NDA’s Init routine
 0 = call the NDA’s Action routine
 bit 0: 1 = daReference is a window pointer
 0 = daReference is an index number (in the range

1..GetNumNDAs)

daRefrence Either a window pointer of an open System window, or an index number

(in the range 1..GetNumNDAs), depending on bit 0 of flags.

action Value to pass to the DA in the A register (an action code if flags bit 1 is

0).

 Action codes greater than 9 are sent to a DA’s Action routine only if its

event mask is $Axxx—otherwise error $0520 is returned.

 An NDA with $Axxx for its eventMask promises to safely ignore any

Action codes it does not recognize.

data Value to pass to the DA in the X and Y registers (for example, an event

record pointer).

daReference Note

GetNumNDAs returns the number of NDAs installed. This number is also the
daReference number of the most recently installed NDA, suitable for passing to
CallDeskAcc.

System 6.0 Toolbox 30 29/10/y

GetDeskAccInfo $2305

GetDeskAccInfo provides safe access to certain information about Desk Accessories
currently installed in the system.

Parameters

Stack before call

Previous contents
flags

daReference

buffSize

bufferPtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors $0520 deskBadSelector selector out of range

C extern pascal void GetDeskAccInfo(flags, daReference,

buffSize, bufferPtr);
 word flags, buffSize;
 Long daReference;
 Ptr bufferPtr;

flags bit 15: 1 = get information on an CDA
 0 = get information on a NDA
 bits 14-1: reserved (use 0)
 bit 0: 1 = daReference is a window pointer
 0 = daReference is an index number

daRefrence Either a window pointer of an open System window, or an index number

(in the range 1..GetNumNDAs), depending on bit 0 of flags.

buffSize Number of bytes the result buffer can hold, not including the first two

bytes (the first two bytes returned indicate the number of bytes of data
following).

 For information on a CDA, buffSize must be at least 4.

System 6.0 Toolbox 31 29/10/y

bufferPtr Pointer to the result buffer, in the following format.

 Information on a CDA:
 +000 returned data size (for example, 4)
 +002 handle to CDA (4 bytes)

 Information on an NDA:
 +000 returned data size
 +002 NDA status (zero if closed, nonzero if open)
 +004 pointer to NDA’s Open routine
 +008 pointer to NDA’s Close routine
 +012 pointer to NDA’s Action routine
 +016 pointer to NDA’s Init routine
 +020 NDA’s period
 +022 NDA’s event mask
 +024 tick count of last Run event sent to NDA
 +028 NDA’s main window pointer, if any
 +032 handle to NDA
 +036 NDA’s Memory Manager user ID

System 6.0 Toolbox 32 29/10/y

GetDeskGlobal $2505

GetDeskGlobal retrieves information from the Desk Manager. Only one value is
currently defined.

Pass $0000 to GetDeskGlobal to get the pointer to the last window that the Desk
Manager examined. This should be used inside NDA-style procedures called by the Desk
Manager to determine what window is being handled.

This allows the same NDA-style procedures to be shared among several system windows.

Parameters

Stack before call

Previous contents
Space

selector

 <—SP

Stack after call

Previous contents
value

 <—SP

Errors $0520 deskBadSelector selector out of range

C extern pascal Long GetDeskGlobal(selector);
 word selector;

System 6.0 Toolbox 33 29/10/y

021 Dialog Manager Update

New Features of the Dialog Manager

•The standard icons for NoteAlert, StopAlert, and CautionAlert are now
colorful.

•Setting bit 30 of the filterProcPtr parameter to ModalDialog or
ModalDialog2 causes the Dialog Manager to automatically change the cursor into an
I-Beam when it is positioned over an editLine item. (If ModalDialog or
ModalDialog2 has left the cursor set to an I-Beam, CloseDialog restores it to an
arrow.)

•ModalDialog no longer steals application events on ROM 3 machines (fixed by
patching GetNextEvent).

The default ErrorSound procedure calls SysBeep2 (in the Miscellaneous Tools) with
one of the following codes:

 Alert stage 0 SysBeep2($C000)
 Alert stage 1 SysBeep2($4001)
 Alert stage 2 SysBeep2($4002)
 Alert stage 3 SysBeep2($4003)
 click outside window SysBeep2($0004)

System 6.0 Toolbox 34 29/10/y

006 Event Manager Update

New Features of the Event Manager

Patched GetNextEvent to fix ROM 3 ModalDialog bug, preventing ModalDialog
from stealing app1 through app4 events.

The GetNextEvent patch also dispatches any deferred SysBeep2 request (see
SysBeep2 in the Miscellaneous Tools).

EMStartUp and EMShutDown are patched to preserve the cursor location in the event
of a smooth application launch, when the super-hires screen remains visible the whole
time.

EMShutDown creates message number 6 containing the cursor location in 640-scale
coordinates. EMStartUp uses this message to position the mouse. QDStartUp
destroys message 6 if the super-hires screen is not already turned on.

System 6.0 Toolbox 35 29/10/y

027 Font Manager Update

New Features of the Font Manager

•ChooseFont can now display up to 24 font sizes within a family. (Previously the
limit was 12.)

•The human interface for ChooseFont is improved:

• The family list and size lists are targetable controls, and Tab moves you between
these and the “other size” edit line field.

• You can navigate in the lists using the up and down arrows, and you can begin

typing a family name to move to that family.

• There are Command- key equivalents to toggle the Style check boxes. Escape and

Command-period are tied to the Cancel button.

• If you uncheck all the style checkboxes, the Plain box automatically rechecks.

•The Font Manager can now load fonts from disk even if they are larger than 64K.

•The Font Manager can deal with font file names as long as 32 characters now. (This is
not the same as family names. Family names are still limited to 25 characters.)

•Fonts are now scaled correctly even if the owTOffset field is in the range $xx8000
to $xxFFFF. This didn’t work before.

•FMStartUp now returns error $1B0D (fmBadParmErr) if you pass zero for the User
ID or the direct-page address.

System 6.0 Toolbox 36 29/10/y

011 Integer Math Update

For ROM 1, IMVersion now returns version 3.0 for consistency with ROM 3. There
are no other changes.

System 6.0 Toolbox 37 29/10/y

020 Line Edit Update

New Features of Line Edit

•Changed Edit Line Control to allow shift-clicking in Line Edit controls. Shift-clicking
now extends the selection (this always worked in Line Edit records, but it didn’t work for
Edit Line controls).

•Fixed a problem where LETextBox would strip a random amount of stuff from the
stack if called with a Length parameter of zero.

•Refer to the Control Manager section for new features of extended Edit Line controls.

•The default Password character is now a hollow diamond instead of an asterisk.

•Line Edit fields now scroll horizontally as you type or drag the mouse.

•The leHiliteHook and leCaretHook features now work properly even if the
supplied routine starts at the beginning of a bank ($xx0000).

System 6.0 Toolbox 38 29/10/y

028 List Manager Update

New Features of the List Manager

Speed Improvements

The List Manager no longer bothers calling the member draw routine for members that
will be completely clipped out (the technique in Apple IIGS Technical Note #74 is now
obsolete, since the List Manager is doing something equivalent).

Standard listDraw routine

The standard listDraw routine draws characters closer together (using
SetCharExtra) if the Pascal or C string being drawn is too wide to be displayed
completely.

SortList and SortList2

•If bit 31 of compareProc is set for SortList or SortList2, the compare
procedure is expected to return the result on the stack rather than in the carry flag. This
makes it easier to write custom compare procedures in Pascal and C.

The system provides a word of result space just deeper than the RTL address. The
compare procedure must set bit 0 when an old-style compare procedure would have
returned with the carry flag set.

•If you pass $00000001 for compareProc to SortList or SortList2, the List
Manager does a case-insensitive sort for you (NIL is still a case-sensitive sort). In
addition to ignoring case, the sort also ignores accent marks on characters and treats
certain typographical characters as their similar ASCII counterparts. See
CompareStrings later in this chapter for a complete list of translations.

NewList2

•You can now pass $FFFFFFFF as the NewList2 drawProcPtr to leave the old
value unchanged).

Targetable List Controls

Extended list controls can now be target controls. If you set the fCtlCanBeTarget
and fCtlWantEvents bits in your list control’s ctlMoreFlags, the list becomes
the target when you Tab to it or click in it or its scroll bar. While a list is the target, it has
a bold outline (a “focus frame”), and the control automatically calls ListKey with any
keystrokes it receives (except for Return and Tab).

System 6.0 Toolbox 39 29/10/y

If your list would be the only targetable control in the window, there is no need to make it
targetable. Just set the fCtlWantEvents bit, leaving fCtlCanBeTarget clear.

ctlFlag Clarification

Toolbox Reference Volume 1, page 11-9, describes the ctlFlag of a List control record
as “style of scroll bar.” In fact, ctlFlag looks like this:

bit 7: control is invisible
bit 6: testMemNever (see above)
bits 5-2: reserved (should be zero)
bit 1: fListSelect from template’s listType field (1 for single-select mode)
bit 0: fListString from template’slistType field (1 for C strings)

memNever Note

To use the memNever bit (bit 5 in the member flags byte of each record), you should
also set the testMemNever bit in the List Control’s ctlFlag field.

If you don’t set testMemNever, clicking on a member selects the member even if its
memNever bit is set.

(Note: This has always been true. It is not a new feature of 6.0.)

System 6.0 Toolbox 40 29/10/y

New List Manager Calls

CompareStrings $181C

CompareStrings compares two Pascal strings, using the same comparison criteria
that SortList and SortList2 use when you pass $00000001 for compareProc.

That is, the comparison is case-insensitive, and it treats foreign characters and special
typographical characters in a reasonable way. For example, accented characters are
treated as similar unaccented characters, typographical quotation marks (“”) are treated as
normal quotation marks (""). See the table below for a complete list of translations.

Parameters

Stack before call

Previous contents
space

flags

String1

String2

 <—SP

Stack after call

Previous contents
Order

 <—SP

Errors none

C extern pascal Word CompareStrings(flags, String1, String2);
 Word flags;
 Ptr String1, String2;

System 6.0 Toolbox 41 29/10/y

flags Reserved; must be zero.

String1 Pointer to first Pascal string.

String2 Pointer to second Pascal string.

Order Zero if the two strings are equal. $FFFF if String1 comes before

String2. $0001 if String1 comes after String2.

List of Translations

The following translations occur internally during the comparision. The original strings
are not modified.

•a..z become A..Z.
•Characters $80..$9F, $CB, $CC, $CD become unaccented capital letters.
•Character $A2 (cents) becomes “C”.
•Character $A7 (ß) becomes “B”.
•Character $AB (a left-slanting apostrophe) becomes an apostrophe.
•Character $AF becomes “0”.
•Character $B4 becomes “Y”.
•Character $BE becomes $AE.
•Character $BF becomes “0”.
•The “<<” and “>>” characters become quotation marks.
•Character $CA (nonbreaking space) becomes a space.
•Character $CF becomes $CE.
•Character $D0 becomes “-”
•Character $D1 (dash) becomes a hyphen.
•Typographical quotes become plain quotes.
•Typographical single-quotes become apostrophes.
•Character $D8 (y-umlat) becomes a Y.
•Characters $D9..$F5 are not in Shaston, but are translated appropriately for international
purposes.
•Other characters remain unchanged.

System 6.0 Toolbox 42 29/10/y

ListKey $171C

ListKey accepts keystrokes and jumps the selection around in the specified list
appropriately. Arrows are supported, and “prefix strings” of up to 32 characters are
supported. For prefix strings to work in a reasonable way, the list must be sorted (as with
SortList or SortList2 with a compareProc of $00000001, a case-insensitive
sort).

Note: If you are using extended list controls, you do not normally need to use

ListKey. Instead, set the fCtlWantEvents and fCtlCanBeTarget bits
in your control’s ctlMoreFlags field, and the list control calls ListKey for
you automatically.

Parameters

Stack before call

Previous contents
flags

theEventRec

listCtlHndl

 <—SP

Stack after call

Previous contents
 <—SP

Errors $1C02 listRejectEvent list did not handle the event

C extern pascal Handle
ListKey(flags,theEventRec,listCtlHndl);
 Word flags;
 EventRecPtr theEventRec;
 CtlRecHndl listCtlHndl;

flags Bits 15-1 are reserved and should be 0.
 Bit 0 is set if ListKey should ignore the first character of every string in

the list. This is provided for lists of Volumes and Devices, like Standard
File’s volume list.

theEventRec Pointer to a valid event record. If the event is a keyDown or

autoKey event, ListKey may select a different item in the specified
list.

System 6.0 Toolbox 43 29/10/y

listCtlHndl Control Handle for the List Control the user sees as the active one.
This can be either a standard list control or an extended list control (see
Note above about extended list controls).

Notes

Before you call ListKey, the QuickDraw port should already be set to the window
containing your list control.

For keyboard navigation in the list to work as expected, your list items must be sorted
into case-insensitive alphabetical order, like SortList2 sorts them when you pass
$00000001 for the compareProc.

ListKey ignores events other than keyDownEvt and autoKeyEvt. You can pass
other kinds of events, but it doesn’t accomplish anything.

Since a Task Record or Extended Task Record begins with a regular Event Record, you
can pass a pointer to any of these structures as the theEventRec parameter.

System 6.0 Toolbox 44 29/10/y

038 Media Controller

New for System 6.0. See separate documentation.

System 6.0 Toolbox 45 29/10/y

002 Memory Manager Update

New Features of the Memory Manager

•Fixed a problem where a long hang and then a crash could result if an Out-of-Memory-
Queue routine freed up the request number of bytes on the second pass, but the memory
request still could still not be satisfied (because of fragmentation or special attributes of
the handle being allocated or manipulated).

•Fixed a problem where, in rare cases, the “high hint handle” (usually the last-allocated
non-fixed handle) and “low hint handle” (usually the last-allocated fixed handle) could
cross and then become equal. After that happened, certain operations (like
DisposeHandle) on the hint handle left the system in a delicate state: If the next
handle allocation was for a non-fixed handle, the system would crash.

New Memory Manager Calls

SetHandleID $3002

SetHandleID provides a supported way to determine and optionally change the User
ID associated with a Memory Manager handle.

To determine a handle’s User ID without changing it, pass zero for the newID parameter.
The previous ID is always returned, whether the ID is changed or not.

Parameters

Stack before call

Previous contents
Space

newID

theHandle

 <—SP

System 6.0 Toolbox 46 29/10/y

Stack after call

Previous contents
oldID

 <—SP

Errors none

C extern pascal word SetHandleID(newID,theHandle);
 Word newID;
 Handle theHandle;

Note: SetHandleID is useful when a Control Panel needs to keep a chunk of code
around while its window is not open:

1. Use GetCodeResConverter to get the address of the code resource converter
2. Use ResourceConverter to log the convert in for a particular resource type
3. Use LoadResource to load a code resource
4. Use DetachResource to prevent the resource from being disposed when the

file is eventually closed
5. Use GetNewID to allocate a new memory ID for the chunk of code
6. Use SetHandleID to change the code’s memory ID to the newly allocated one

(so that when the system disposes of all memory using the Control Panel’s
memory ID, the code will not be disposed)

System 6.0 Toolbox 47 29/10/y

015 Menu Manager Update

New Features of the Menu Manager

•Pop-up menu controls now support ctlMoreFlags bits 7 ($0080),
fDrawPopDownIcon, to draw a down-pointing triangle at the right edge when the
menu is not popped up; and bit 5 ($0020), fDrawIconInResult, to draw the current
menu item’s icon when the menu is not popped up.

•The new call InsertPathMItems builds a menu, complete with icons, from a
GS/OS pathname. Used by Standard File and the Finder already.

•When a menu item is blinking, the speed is now limited using WaitUntil in the
Miscellaneous Tools. This way an accellerated machine does not blink the item too fast
to see.

•Patched EnableMItem and DisableMItem on ROM 3 only to simulate a dispatcher
error ($0001) when the Menu Manager has not been started up (for compatibility with a
broken 3rd-party application).

•MenuStartUp now sets the menu item blink count from bits 4-3 of Battery RAM
location $5E (the range is zero to three). Previously, the count was always three after
MenuStartUp.

•When MenuKey receives a keypress with the Command key down but no menu item
can be found with a matching key equivalent, MenuKey calls SendRequest with
request code systemSaysMenuKey ($0F01) and dataIn equal to the Task Record
pointer that was passed to MenuKey. This provides a way for desk accessories to have
key equivalents without accidentally overriding an application’s menu item key
equivalents.

If the systemSaysMenuKey broadcast is accepted, MenuKey changes the what field
of the event record to be a null event to prevent the application from taking any further
action on the event.

(MenuKey does systemSaysMenuKey only if the Desk Manager was successfully
started, the current menu bar is the System menu bar, and the system event mask allows
posting of Desk Accessory events.)

•InsertMenu now returns error $0F04, dupMenuID, if a menu being inserted has the
same menu ID as another menu already in the same menu bar. Previously , no error was
returned, but the system would later hang inside FixMenuBar.

•HideMenuBar changes the SCBs only for the scanlines from 0 to MenuHeight-1.
(It used to call SetAllSCBs.)

System 6.0 Toolbox 48 29/10/y

Icons in Menu Items

The menu manager now supports icons in menu items (including pop-up menu items).
Several calls have been added: SetMItemIcon, GetMItemIcon,
SetMItemStruct, GetMItemStruct, RemoveStruct, SetMItemFlag2, and
GetMItemFlag2. A few old calls have been modified slightly and an additonal menu
item structure has been defined.

The Menu Manager requires that QuickDraw II Auxiliary be available when icons are
present in menu items.

Note: Do not create an icon with a width such that the width of the icon plus the width

of the menu item's name are greater than the width of the screen.

 Do not create an icon with a height greater than the height of the text in the menu

item. No clipping is done when the icon is drawn.

Several new bits have been defined in the itemFlag field of the menu item record.
(See page 37-15 of Toolbox Ref. Vol. 3 for more details on the structure of a menu item
record/template.)

itemFlag bit 10 Indicates whether or not there is an additional
 structure associated with this menu item.
 0 = no structure associated with menu item
 1 = there is an additional structure associated with item
 bits 9-8 If bit 10 is set, these bits describe how this structure will be
referenced.
 00 = Reference is by pointer
 01 = Reference is by handle
 10 = Reference is by resource ID
 11 = Invalid value

System 6.0 Toolbox 49 29/10/y

When bit 10 is set the menu item record is defined as follows:

Menu Item Record

 |-----------------|
$00 | version | Word—Version number for template, must be 0
 |-----------------|
$02 | itemID | Word—Menu item ID
 |-----------------|
$04 | itemChar | Byte—Primary keystroke equivalent character
 |-----------------|
$05 | itemAltChar | Byte—Alternate keystroke equivalent character
 |-----------------|
$06 | itemCheck | Word—Character code for checked items
 |-----------------|
$08 | itemFlag | Word—Menu item flag word
 |-----------------|
$0A | itemStructRef | Long—Reference to new structure (not
 |-----------------| to item’s name)

itemStruct Record:

 |-----------------|
$00 | itemFlag2 | Word—Bit flags that control attributes of
 |-----------------| this structure
$02 | itemTitleRef | Long—Reference to item name
 |-----------------|
$06 | itemIconRef | Long—Reference to icon associated with item
 |-----------------|

Important: An itemStruct record is not just a template! Your menu item contains

a reference to the itemStruct, so the ten-byte itemStruct structure
must remain available. (For example, if your itemStruct is referenced
by pointer, make it a global variable, not a stack-based local variable!)

 This also means you can’t share the same itemStruct among multiple

menu items.

 If your itemStruct records are referenced as rItemStruct

resources, note that the Menu Manager makes their handles purgeable
after each use. If you use SetMItemIcon, SetMItemName, or
SetMItemFlag2 and expect the results to “stick,” you must mark your
rItemStruct resources as Locked so they will remain in memory even
after they are marked purgeable.

itemFlag2 bit 15 Indicates whether or not there is an icon associated
 with the menu item.
 0 = No icon
 1 = There is an icon

System 6.0 Toolbox 50 29/10/y

 bits 14-2 Reserved. Must be set to 0. In the future these bits will
define additonal fields that may be added to this record.

 bits 1-0 Defines how the icon is referenced
 00 = Reference is by pointer
 01 = Reference is by handle
 10 = Reference is by resource ID
 11 = Invalid value

ItemTitleRef Since the reference to the itemStruct record is now stored in

the itemName field of the item record, the reference to the item’s
name has been moved here. The bits that normally define how this
field will be referenced are still controlled in the itemFlag field
of the item record.

ItemIconRef This is the reference to the icon data structure. The structure itself

is defined in Appendix E, page 48, of the Toolbox Reference Vol.
3.

The following existing calls have been modified to work with the new
itemStruct record.

All these calls still perform as documented. Internally the call has changed to
accommodate the possibility that the menu item may now have an itemStruct record
associated with it.

SetMItem $240F
SetMItem2 $410F
GetMItem $250F
SetMItemName $3A0F
SetMItemName2 $420F
CalcMenuSize $1C0F

System 6.0 Toolbox 51 29/10/y

New Menu Manager Calls:

GetMItemBlink $4F0F

GetMItemBlink returns the current menu item blink setting, as set with
SetMItemBlink.

The default menu item blink setting, from 0 to 3, is stored in bits 3-4 of Battery RAM
location $5E.

Parameters

Stack before call

Previous contents
Space

 <—SP

Stack after call

Previous contents
count

 <—SP

Errors none

C extern pascal Word GetMItemBlink();

System 6.0 Toolbox 52 29/10/y

GetMItemFlag2 $4C0F

Returns the itemfFag2 field for the itemStruct record associated with the menu
item indicated. If bit 10 is not set then the value returned is not valid.

Note: To use this call on a menu item inside a pop-up menu, you must first set the
current menu bar to be your pop-up control.

Parameters

Stack before call

Previous contents
Space

itemID

 <—SP

Stack after call

Previous contents
itemFlag2

 <—SP

Errors $0F03 menuNoStruct This error is returned if bit 10 of

itemFlag is not set.

C extern pascal Word GetMItemFlag2(itemID);
 Word itemID;

System 6.0 Toolbox 53 29/10/y

GetMItemIcon $480F

Returns the reference to the icon associated with menu item indicated. Zero is returned if
bit 10 of itemFlag is set to zero.

Note: To use this call on a menu item inside a pop-up menu, you must first set the
current menu bar to be your pop-up control.

Parameters

Stack before call

Previous contents
Space

itemID

 <—SP

Stack after call

Previous contents
iconRef

 <—SP

Errors $0F03 menuNoStruct This error is returned if bit 10 of
 itemFlag is not set.

C extern pascal Ref GetMItemIcon(itemID);
 Word itemID;

System 6.0 Toolbox 54 29/10/y

GetMItemStruct $4A0F

Returns the reference to the itemStruct record of the menu item specified. If there is
no structure, i.e. bit 10 of itemFlag is set to zero then zero will be returned as the
reference.

Note: To use this call on a menu item inside a pop-up menu, you must first set the
current menu bar to be your pop-up control.

Parameters

Stack before call

Previous contents
Space

itemID

 <—SP

Stack after call

Previous contents
itemStructRef

 <—SP

Errors $0F03 menuNoStruct This error is returned if bit 10 of

itemFlag is not set.

C extern pascal Ref GetMItemStruct(itemID);
 Word itemID;

System 6.0 Toolbox 55 29/10/y

InsertPathMItems $500F

InsertPathMItems takes a GS/OS pathname and inserts one menu item into the
specified menu for each segment of the pathname. Each item has an appropriate icon
next to it: either a Folder (open or closed) or a device icon (for example, a hard drive, a
3.5” disk, a 5.25” disk, an AppleShare server, a RAM Disk, or a CD-ROM).

The GS/OS pathname you pass to InsertPathMItems should refer to a volume or
directory, not a file.

After InsertPathMItems inserts all the necessary items, it calls CalcMenuSize
for you automatically. There is no need to call CalcMenuSize separately unless you
add or remove more items.

Parameters

Stack before call

Previous contents
flags

pathPtr

deviceNum

menuID

afterID

startingID

resultPtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors errors from InsertMenuItem2 returned unchanged
 Memory Manager errors returned unchanged

System 6.0 Toolbox 56 29/10/y

C extern pascal void InsertPathMItems(flags, pathPtr,
deviceNum, menuID, afterID, startingID, resultPtr);

 Word flags;
 GSOSStr255Ptr pathPtr;
 Word deviceNum, menuID, afterID, startingID;
 Ptr resultPtr;

flags bit 0: 0 = insert items with device at bottom
 1 = insert items with device at top
 bit 1: reserved (use 0)
 bit 2: 0 = use closed folder icons
 1 = use open folder icons
 bit 3: 0 = call GetDevNumber to find the device
 1 = the deviceNum parameter is valid
 bit 4: 0 = do not assume pathPtr points to a fully-expanded pathname
 1 = pathPtr is already fully expanded (like ExpandPath

result)
 bits 15-5: reserved (use 0)

pathPtr Pointer to class-one GS/OS pathname

deviceNum The GS/OS device number of the device corresponding to the pathname in

pathPtr, if known. You must set bit 3 of flags for
InsertPathMItems to pay attention to deviceNum. By supplying
this information, you can save InsertPathMItems the trouble of
calling GetDevNumber (which can cause disk access and take a
significant amount of time).

 If you pass $FFFF for deviceNum, InsertPathMItems uses a

grayed-out disk icon to indicate that the volume is offline.

menuID The MenuID of the menu to insert into (passed to InsertMItem2)

afterID The Menu Item ID to insert after, in the specified menu (zero to insert at

the top of the menu).

startingID The Menu Item ID for the first item to be inserted (item numbers build

up sequentially from there).

resultPtr Pointer to a 10-byte buffer with the following format:
 +000 WORD highest Menu Item ID used
 +002 LONG first handle to be disposed after menu items are removed
 +006 LONG second handle to be disposed after menu items are removed

Note: The items are always inserted working from left to right in the pathname,

regardless of the setting of flags bit 0. The first menu item inserted (the “device”
item) gets startingID, the second gets startingID+1, etc.

System 6.0 Toolbox 57 29/10/y

RemoveMItemStruct $4B0F

This call removes the itemStruct record from the item record. Bit 10 of the
itemFlag is set to zero, bits 8 and 9 are set to zero, and the itemTitleRef field is
copied from the itemStruct record back to the item record. If bit 10 is not already set
then this call does nothing. If removing the itemStruct record will change the
appearance of the menu item then CalcMenuSize must be called after
RemoveItemStruct.

Note: this call does not dispose of the memory used for the itemStruct record.

Note: To use this call on a menu item inside a pop-up menu, you must first set the
current menu bar to be your pop-up control.

Parameters

Stack before call

Previous contents
itemID

 <—SP

Stack after call

Previous contents
 <—SP

Errors $0F03 menuNoStruct This error is returned if bit 10 of

itemFlag is not set.

C extern pascal void RemoveMItemStruct(itemID);
 Word itemID;

System 6.0 Toolbox 58 29/10/y

SetMItemFlag2 $4D0F

Sets the itemFlag2 field for the itemStruct record of the indicated menu item to
the value passed. If you wanted to keep the existing bit settings the same then you must
first call GetMItemFlag2, "OR" in your bit settings and then pass this value.

If you set or reset any bits that might change the appearance of a menu item then you
must call CalcMenuSize after the SetMItemFlag2 call.

Note: To use this call on a menu item inside a pop-up menu, you must first set the
current menu bar to be your pop-up control.

Parameters

Stack before call

Previous contents
newValue

itemID

 <—SP

Stack after call

Previous contents
 <—SP

Errors $0F03 menuNoStruct This error is returned if bit 10 of

itemFlag is not set.

C extern pascal void SetMItemFlag2(newValue,itemID);
 Word newValue;
 Word itemID;

System 6.0 Toolbox 59 29/10/y

SetMItemIcon $470F

Sets the ItemIconRef field in the itemStruct record for the menu item indicated.
CalcMenuSize must be called on the menu of the affected menu item after the
SetMItemIcon call since the width of the menu may have changed. The parameter
IconDesc is used by the call to set the itemFlag2 field correctly.

Note: To use this call on a menu item inside a pop-up menu, you must first set the
current menu bar to be your pop-up control.

Parameters

Stack before call

Previous contents
iconDesc

iconRef

itemID

 <—SP

Stack after call

Previous contents
 <—SP

Errors $0F03 menuNoStruct This error is returned if bit 10 of

itemFlag is not set.

C extern pascal void SetMItemIcon(iconDesc,iconRef,itemID);
 Word iconDesc;
 Ref iconRef;
 Word itemID;

System 6.0 Toolbox 60 29/10/y

SetMItemStruct $490F

Sets the ItemTitleRef field of the item record to the reference for the itemStruct
record passed. This call always sets bit 10 of itemFlag, and it also sets bits 8 and 9 of
itemFlag to reflect the itemStructDesc parameter passed. The reference that was
in the itemTitleRef field is then automatically copied over to the “new”
itemTitleRef field in the itemStruct record. If the itemStruct record
changes the appearance of the menu item then CalcMenuSize must be called after the
SetMItemStruct call.

Note: To use this call on a menu item inside a pop-up menu, you must first set the
current menu bar to be your pop-up control.

Parameters

Stack before call

Previous contents
itemStructDesc

itemStructRef

itemID

 <—SP

Stack after call

Previous contents
 <—SP

itemStructDesc Bits 0-1: 00=pointer, 01=handle, 10=rItemStruct resource

Errors none

C extern pascal void SetMItemStruct(itemStructDesc,

itemStructRef,itemID);
 Word itemStructDesc;
 Ref itemStructRef;
 Word itemID;

System 6.0 Toolbox 61 29/10/y

032 MIDI Tools Update

(no change)

System 6.0 Toolbox 62 29/10/y

003 Miscellaneous Tools Update

New Features of the Miscellaneous Tools

•SetVector on ROM 1 machines now behaves just like on ROM 3 machines (there is
no error checking on the vector reference number).

•Changed UnPackBytes to fix to a rare case where it would treat bytes past the end of
your source buffer as valid packed data (part of Apple IIGS Technical Note #94 is now
obsolete).

•Added the new functions SysBeep2, VersionString, WaitUntil,
StringToText, ShowBootInfo, and ScanDevices.

•Whenever the Bell vector is called (for example, by SysBeep or by printing a Control-
G through the 40- or 80-column firmware), the border blinks if either (1) the system
volume is set to the lowest setting or (2) bit 0 of Battery RAM location $5E is zero
(indicating that the user wants or needs visual indication of sounds). This bit can be
changed with the checkbox in the Sound control panel.

System 6.0 Toolbox 63 29/10/y

New Miscellaneous Tools Calls

ConvSeconds $3703

ConvSeconds is present in System Software 5.0.3 and later, but verbs 8 and 9 were
documented incorrectly.

Allows conversion to and from a long integer containing the number of seconds since
January 1, 1904—the format used by the Macintosh operating system. ConvSeconds
is provided to allow easier handling of dates in applications that work with several
different date formats.

Parameters

Stack before call

Previous contents
Space

convVerb

seconds

datePtr

 <—SP

Stack after call

Previous contents
secondsOut

 <—SP

Errors $0390 badTimeVerb Invalid convVerb value
 $0391 badTimeData Invalid date or time to be converted

C extern pascal unsigned long convSeconds(convVerb, seconds,

datePtr);
 unsigned Word convVerb;
 unsigned Long seconds;
 Pointer datePtr;

System 6.0 Toolbox 64 29/10/y

convVerb The type and direction for the conversion. Valid verbs are:

0 from seconds to the Miscellaneous Tools ReadTimeHex
 format
1 from the Miscellaneous Tools ReadTimeHex format to
 seconds
2 from seconds to ASCII text (ReadAsciiTime format)
3 not implemented
4 from seconds to ProDOS date/time format
5 from ProDOS date/time format to seconds
6 return the current time in seconds
7 set the current time from seconds
8 from ProDOS date/time format to the Miscellaneous Tools
 ReadTimeHex format
9 from the Miscellaneous Tools ReadTimeHex format to
 ProDOS date/time format
10 from seconds to HyperCard IIGS format
11 from HyperCard IIGS format to seconds

Note: In previous documentation (including the 5.0.3/4 release notes) the values of

verbs 8 and 9 were interchanged. The values above are correct.

HyperCard IIGS format is the same as the Miscellaneous Tools ReadTimeHex format
except that the bytes for the month and the day are one-based instead of zero-based.

seconds The input number of seconds since January 1, 1904 for all conversions

that convert from a number of seconds to a different format, as well as for
setting the current time. Conversions to a number of seconds since
January 1, 1904 ignore this parameter, although it must be present.

datePtr Pointer to a buffer for all input and output values that are not a number of

seconds since January 1, 1904. Conversions from a number of seconds
will place the results in the buffer pointed to by datePtr; conversions to a
number of seconds will get the source from a record pointed to by datePtr.
When converting between two formats that are not seconds, the input
pointed to by datePtr will be overwritten by the output.

Warning The buffer pointed to by datePtr must always be at least 8 bytes long and

must be at least 40 bytes long when converting to ASCII format.
ConvSeconds will overwrite the first eight bytes of the buffer pointed to
by datePtr even if the input is less than eight bytes long.

secondsOut The output number of seconds since January 1, 1904 for all conversions

that convert from any other format to a number of seconds. Conversions
from a number of seconds since January 1, 1904 do not use this result
space, although it must be present.

System 6.0 Toolbox 65 29/10/y

Note: In System 6.0, ConvSeconds treats ProDOS year numbers as documented in the
ProDOS 8 Technical Notes. Year values 40..99 are 1940..1999, and years 0..39 are
2000..2039.

System 6.0 Toolbox 66 29/10/y

ScanDevices $3D03

ScanDevices provides easy access to a GS/OS system service vector which checks for
disk insertions.

ScanDevices makes a device status call to each device with removable media except
for AppleDisk 5.25 devices, which cannot be polled quickly. The devices are polled in
ascending order. Every qualifying device is polled, and then ScanDevices returns the
device number of the first device that reported an insertion.

If you want to insure that an insertion reported by ScanDevices is a recent insertion,
first call ScanDevices and ignore the result. This forces the system to notice any old
insertions on devices that have not been accessed recently.

As a side-effect, ScanDevices causes GS/OS to call Nofity Procs to inform them of
any inserts or ejects that are noticed during the status calls.

Parameters

Stack before call

Previous contents
Space

 <—SP

Stack after call

Previous contents
deviceNumber

 <—SP

Errors none

C extern pascal Word ScanDevices();

deviceNumber is either zero (no disk inserted) or the GS/OS device number of the

lowest-numbered device which reported an insertion.

System 6.0 Toolbox 67 29/10/y

ShowBootInfo $3C03

ShowBootInfo provides a way for special system extensions to make their presence
known while the system is starting up. (For example, Control Panel 2.0 calls
ShowBootInfo to display the icons of all Control Panels that receive control at boot time.)

You can provide ShowBootInfo with an icon, a text string, or both. The icon should
be 20 pixels tall.

ShowBootInfo displays the icon along the bottom of the super-hires screen (each icon
appears farther to the right), or it displays the text string on the text screen. (Normally
only the super-hires screen is visible during boot; if the user presses a key at the
beginning of the boot sequence, the text screen is visible instead.)

If the row of icons reaches the right edge of the screen, the whole row is erased to blue
and the next icon appears at the bottom left.

ShowBootInfo takes no action if QuickDraw II is started. This way if setup file is
installed at some time other than boot, its icon will not interfere with an application’s use
of the desktop.

Note: For users who don’t like a cluttered boot screen, setting bit 1 of Battery-RAM

location $5F prevents ShowBootInfo from displaying icons. (It still displays
text strings.)

Parameters

Stack before call

Previous contents
cStringPtr

iconPtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors none

C extern pascal void ShowBootInfo(cStringPtr, iconPtr);
 Long cStringPtr, iconPtr;

System 6.0 Toolbox 68 29/10/y

cStringPtr points to a C string typically giving the name and version number of a
system extension. Pass NIL if you don’t want a string displayed.
ShowBootInfo automatically starts a new line after displaying your
string, so the string should not have a return character on the end.

 To make your string fit in with other strings, use twenty-two characters to

describe the name of the product, followed by “vXX.XX” for the version.
For example:

System Loader v04.00
System Dispatch Table v04.00

iconPtr points to a 20-pixel-tall icon in the same format DrawIcon requires (see

QuickDraw II Auxiliary). Pass NIL if you don’t want an icon displayed.

 If bit 31 of iconPtr is set, the icon overwrites the previously drawn

icon.

System 6.0 Toolbox 69 29/10/y

StringToText $3B03

StringToText translates 8-bit-character text into similar text that can be displayed on
the Apple IIGS text screen. You specify whether the resulting text can contain
MouseText characters, or whether it must be plain ASCII.

You also specify whether the resulting text is allowed to be longer than the original text;
this permits substitutions such as “(C)” for “©” and “>=“ for “≥”.

Eight slightly different display character sets are available; unless you specify otherwise,
StringToText converts into the currently active character set.

Note: In the worst case, the output text is 4 times as long as the input text. This case is
where the input text consists entirely of a series of “™” characters; the output is a series
of “(TM)” sequences, four characters each.

Parameters

Stack before call

Previous contents
Space

Space

flags

textPtr

textLen

resultPtr

 <—SP

Stack after call

Previous contents
resultFlags

printableLength

 <—SP

Errors $034F mtBufferTooSmall

C extern pascal LongWord StringToText(flags, textPtr,

textLen, resultPtr);
 Word flags, textLen;

System 6.0 Toolbox 70 29/10/y

 Ptr textPtr, resultPtr;

flags bit 15 (fAllowMouseText): 1 = allow MouseText in result; 0 =

no MouseText
 bit 14 (fAllowLongerSubs): 1 = allow substituting several

characters for one
 bit 13 (fForceLanguage): 1 = force the result language in bits

2-0; 0=use current display language
 bit 12 (fPassThru): 1 = pass untranslated high-ASCII characters

straight through instead of omitting them
 bits 11-3: reserved (use 0)
 bits 2-0: result language. Specifies one of the eight character sets

available in the Apple IIGS text mode.
0 = USA English
1 = U.K. English
2 = French
3 = Danish
4 = Spanish
5 = Italian
6 = German
7 = Swedish

textPtr Pointer to the input text. All 8 bits of the input characters are

significant; the character set is the same as Shaston 8 (whch is also
the same as the Macintosh standard character set).

textLen Number of characters in the input text.

resultPtr Pointer to result buffer. The buffer is a GS/OS result buffer. The

first word is the buffer size, the second word is the data size, and
the data begins at offset 4. You must provide the buffer size word;
the value includes the 4 bytes used by the size words.

printableLength Number of printable characters in the result. If any MouseText

is present in the result, printableLength will be smaller than
the data size word in the result buffer.

resultFlags Bit 15 is set if the output text differs from the input text. Bits 14-0

are reserved and should be ignored.

Note: If you call StringToText from a high-level language, the result is a 32-bit

integer. You can use HiWord to get the resultFlags and LoWord to get the
printableLength.

List of Translations

$7F (DEL) becomes a MouseText checkerboard character if MouseText is allowed; it is removed
otherwise.

Bullet (•) becomes an asterisk (*)

System 6.0 Toolbox 71 29/10/y

“®” becomes “(R)”
“©” becomes “(C)”
“™” becomes “(TM)”
Character $AB becomes an apostrophe.
“≠” becomes “<>”
“±” becomes “+-”
“≤” becomes “<=”
“≥” becomes “>=”
Character $B5 (micro) becomes “u”
“ƒ” becomes “f”
“«” becomes “<<”
“»” becomes “>>”
Character $CA (nonbreaking space) becomes a space ($20)
Character $D0 becomes a hyphen.
Character $D1 (dash, —) becomes two hyphens if allowed, one if not.
Typographical double quotes become boring double quotes.
Typographical single quotes become boring single quotes.
Characters $80 to $9F and $CB to $CD (accented letters) become similar unaccented letters.
Character $C0 (¿) is preserved if the display language is Spanish; otherwise it becomes a “?”
Character $C1 (¡) is preserved if the display language is Spanish; otherwise it becomes a “!”
Character $CE becomes “OE”
Character $CF becomes “oe”
Character $D8 becomes “y”

Character $C9 (…) a MouseText ellipsis character if MouseText is allowed; otherwise it becomes three

periods
Character $11 (hollow apple) becomes a MouseText hollow apple or is removed
Character $12 (check) becomes a MouseText check mark or is removed
Character $13 (solid diamond) becomes a MouseText solid diamond or is removed
Character $14 (solid apple) becomes a MouseText solid apple or is removed
Character $D7 (hollow diamond) becomes a MouseText solid diamond or is removed (there is no

MouseText hollow diamond available)

“#” is removed if the display language is U.K., French, Spanish, or Italian; otherwise it is unchanged.
“@” is removed if the display language is French, Spanish, Italian, or German. Otherwise it is

unchanged.
“\” and “|” are removed if the display language is French, Danish, Spanish, Italian, German, or Swedish.

For USA and U.K. they are unchanged.
“[“, “]”, “{“, and “}” are changed into “(“ and “)” if the display language is French, Danish, Spanish,

Italian, German, or Swedish. For USA and U.K. they are unchanged.
“`” is changed to an apostrophe if the display language is Italian. Otherwise it is unchanged.
“~” is removed if the display language is French, Italian, or German; otherwise it is unchanged.
“£” is removed if the display language is USA, Danish, German, or Swedish. For U.K, French, Spanish,

and Italian it is preserved.
“ç” is preserved if the display language is French, Spanish, or Italian. Otherwise it is changed into a “c”
“a” with a grave accent is preserved for French, Italian. Otherwise it becomes an “a”.
“å” is preserved for Danish and Swedish. Otherwise it becomes an a.
“Å” is preserved for Danish and Swedish. Otherwise it becomes an A.
“°” is preserved for French, Spanish, and Italian. Otherwise it is removed.
“§” is preserved for French, Spanish, Italian, and German. Otherwise it is removed.
“ø” and “Ø” are preserved for Danish; otherwise they are changed to “0” (zero).
“Æ” and “æ” are preserved for Danish; otherwise they become “AE” and “ae”
“Ñ” and “ñ” are preserved for Spanish. Otherwise they become “N” and “n”
“é” is preserved for French, Italian; otherwise it becomes “e”
“grave u” is preserved for French and Italian; otherwise it becomes “u”
“grave e” is preserved for French and Italian; otherwise it becomes “e”
“¨” is preserved for French; otherwise it is removed
“grave o” is preserved for Italian; otherwise it becomes “o”

System 6.0 Toolbox 72 29/10/y

“grave i” is preserved for Italian; otherwise it becomes “i”
“Ä”, “Ö”, “ä”, and “ö” are preserved for German and Swedish; otherwise they become “A”, “O”, “a”,

and “o”
“Ü” and “ü” are preserved for German; otherwise they become “U” and “u”
“ß” is preserved for German; otherwise it becomes “ss”

Character $A2 (cents) becomes “c”
Character $B4 becomes “Y”
Character $BB becomes “a”
Character $BC becomes “o”
Character $BD becomes “O”
Character $D9 becomes “Y”
Character $DA becomes “/”
Character $DB becomes “o”
Character $DC becomes “<“
Character $DD becomes “>“
Character $DE becomes “fi”
Character $DF becomes “fl”
Character $E1 becomes “.”
Character $E2 becomes “,”
Character $E3 becomes “,,”
Character $E5 becomes “A”
Character $E6 becomes “E”
Character $E7 becomes “A”
Characters $E8 and $E9 become “E”
Characters $EA, $EB, $EC, and $ED become “I”
Characters $EE and $EF become “O”
Character $F0 becomes a MouseText solid apple, if allowed.
Character $F1 becomes “O”
Characters $F2, $F3, and $F4 become “U”
Character $F5 becomes “i”

System 6.0 Toolbox 73 29/10/y

SysBeep2 $3803

SysBeep2 takes an integer parameter indicating what sound to make. This is a clean
hook for providing some useful Universal Access features, or just for sound addicts to
have loads of fun with. SysBeep2 is built on top of SendRequest in the Tool
Locator.

Parameters

Stack before call

Previous contents
beepType

 <—SP

Stack after call

Previous contents
 <—SP

C extern pascal void SysBeep2(beepType);
 Word beepType;

beepType:
 bit 15: 1=do nothing if no request procedure handles request (sbSilence)
 0=Beep if no request procedure handles the request
 bit 14: 1=make the sound at the next GetNextEvent call
 0=do it now (sbDefer)
 bits 13-0: identifies the specific reason for making a sound (see table)

Notes on deferred sounds

Bit 14 has no effect if the Event Manager is not started. If the Event Manager is started,
the beep is deferred until the next GetNextEvent call that allows keyDown,
autoKey, or mouseDown events.

When bit 14 is set and there is already a SysBeep2 call waiting to be dispatched at the
next GetNextEvent call, the new call is ignored. It does not override the previous
call, and it does not get queued up to play in sequence. It works this way on purpose.
For example, if you are about to call AlertWindow but wish to override the
SysBeep2 sound AlertWindow will automatically play, call SysBeep2 yourself
first to schedule a deferred sound. The deferred SysBeep2 that AlertWindow
executes has no effect.

System 6.0 Toolbox 74 29/10/y

SysBeep2 codes

All codes not listed are reserved for future definition by Apple.

Codes for which the Sound Control Panel “Give visual indication of sound” checkbox
applies are marked with an asterisk (*).

 *0000 sbAlertStage0 Alert stage 0 ($8000=default to silence)
 *0001 sbAlertStage1 Alert stage 1
 *0002 sbAlertStage2 Alert stage 2 (special: defaults to beeping twice)
 *0003 sbAlertStage3 Alert stage 3 (special: defaults to beeping 3 times)
 *0004 sbOutsideWindow Can’t click there (clicked outside a dialog/alert)
 *0005 sbOperationComplete Task Completed
 *0006 reserved
 *0007 reserved
 *0008 sbBadKeypress Bad keypress
 *0009 sbBadInputValue Bad input value
 *000A sbInputFieldFull Input field full
 *000B sbOperationImpossible Task impossible
 *000C sbOperationFailed Task failed
 *000D..000F reserved

 0010 reserved
 0011 sbGSOStoP8 Switch from GS/OS to P8
 0012 sbP8toGSOS Switch from P8 back to GS/OS
 0013 sbDiskInserted Disk inserted
 0014 sbDiskEjected Disk ejected
 0015 sbSystemShutdown System shutdown
 0016 reserved for Volume contents changed
 0017..002F reserved (for other NotifyProc events)

 *0030 sbDiskRequest Disk request (like AlertWindow with disk-
swap icon)
 0031 sbSystemStartup System startup
 0032 sSystemRestart reserved for System restart (not used)
 *0033 sbBadDisk Bad disk
 0034 sbKeyClick reserved for Key click
 0035 sbReturnKey reserved for Return key
 0036 sbSpaceKey reserved for Space key

 0040 sbWhooshOpen “whoosh open” (called by WhooshRect)
 0041 sbWhooshClosed “whoosh closed” (called by WhooshRect)
 0042 sbFillTrash filling trash
 0043 sbEmptyTrash emptying trash
 *0050 sbAlertWindow Attention, need user response
 *0051 reserved for AlertWindow
 *0052 sbAlertStop Stop (example: AlertWindow with Stop icon)

System 6.0 Toolbox 75 29/10/y

 *0053 sbAlertNote Note (example: AlertWindow with Note icon)
 *0054 sbAlertCaution Caution (example: AlertWindow with Caution
icon)
 *0055-59 reserved for AlertWindow

 0060 sbScreenBlanking screen is blanking
 0061 sbScreenUnblanking screen is unblanking

 0100 sbYouHaveMail You Have Mail

 *0Exx sbErrorWindowBase called by ErrorWindow for errors 0..$FF
 *0EFF sbErrorWindowOther called by ErrorWindow for errors
$0100..$FFFF

 *0Fxx reserved for assignment where a visual indication of the sound is appropriate.

Note: The toolbox installs a GS/OS Notify Proc at system setup time. For certain events

(Shutdown, Disk Eject, Disk Insert, Switch to P8, and Switch to GS/OS), this
notify proc calls SysBeep2 with codes in the range $8010 to $802F.

Sound Request Procedures

SysBeep2 calls SendRequest in the Tool Locator with requestCode $0001
(systemSaysBeep). The low word of dataIn contains bits 0 to 13 of beepType.

SysBeep2 first calls SendRequest and directs the request only at the Sound Control
Panel. If the request is rejected, SysBeep2 calls SendRequest again to broadcast the
reqeust to everyone.

Bit 31 of dataIn means that a request procedure should accept or reject the request as
usual, but no actual sound should be produced. This way, it’s possible to send out a
“feeler” to determine if a given sound request will be handled or not (especially whether
it will be handled by a reqeust procedure earlier than your own).

System 6.0 Toolbox 76 29/10/y

VersionString $3903

VersionString converts a 32-bit Version number into a Pascal string up to nine characters
long in the supplied ten-byte buffer.

See rVersion in the New Resource Types section for the definition of a long version
number and for examples of the strings VersionString returns.

Parameters

Stack before call

Previous contents
flags

theVersion

stringPtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors none

C extern pascal void VersionSTring(flags, theVersion,
 stringPtr);
 Word flags;
 Long theVersion;
 Ptr stringPtr;

flagWord is reserved and should be zero.

theVersion is a standard version longword, as described in the New Resource Types
section.

System 6.0 Toolbox 77 29/10/y

WaitUntil $3A03

WaitUntil provides an upper limit on the frequency of repeating actions so that
improvements in system speed do not accidentally make things happen too fast for the
user to see. On the other hand, calling WaitUntil does not significantly slow things
down in cases where it is already slow enough.

WaitUntil deals with one-word time stamps in units of 1/960th of a second (one
sixteenth of a tick).

Parameters

Stack before call

Previous contents
Space

delayFrom

delayAmount

 <—SP

Stack after call

Previous contents
newTime

 <—SP

Errors none

C extern pascal Word WaitUntil(delayFrom, delayAmount);
 Word delayFrom, delayAmount;

delayFrom specifies the time in the past from which to wait. For the first call in a

series, use zero. For the other calls, use the newTime value returned by
the previous call.

delayAmount specifies the minimum delay to enforce since the delayFrom time. If it

has already been long enough, WaitUntil returns right away; otherwise
it kills some time before returning. delayAmount is in units of one
sixteenth of a tick. For example, pass $0040 for 4 ticks.

newTime This is a representation of the time the WaitUntil call completes. This

is suitable for passing to a future WaitUntil call.

System 6.0 Toolbox 78 29/10/y

Notes

•If interrupts are disabled, WaitUntil may return immediately. For useful results,
interrupts should be left enabled.

•The timing is only guaranteed to plus or minus one tick in System 6.0.

•Battery RAM location $60 can affect how long WaitUntil waits. If the value is $00
or $FF, there is no effect. For any other value, the delayAmount parameter is
multiplied by one less than the value of the battery RAM location (up to a maximum of
$F00 ticks). Note that a value of $01 multiplies the delay by zero, eliminating the delay.

•Scroll Bar controls automatically call WaitUntil when their value changes.
HiliteControl also calls WaitUntil. See the Control Manager chapter.

System 6.0 Toolbox 79 29/10/y

026 Note Sequencer Update

No change for System 6.0.

025 Note Synthesizer Update

No change for System 6.0.

019 Print Manager Update

New Features of the Print Manager

When the user boots from an AppleShare file server, the Print Manager now puts the
Printer.Setup file inside the user’s network user folder, instead of trying to put it in
*:System:Drivers (to which the user may not have access).

If the user has no network user folder, then the *:System:Drivers path is used just
like before.

Several dialogs that were created using the Dialog Manager now use AlertWindow.
(This saves disk space and RAM space.)

System 6.0 Toolbox 80 29/10/y

004 QuickDraw II Update

New Features of QuickDraw II

Added a QDStartUp MasterSCB bit (value $0100, bit 8) that causes the screen not to
be cleared if it is already being displayed. StartUpTools uses this to avoid wiping
the screen first to black and then to the desktop pattern, when the Window Manager is
also being started up.

QDStartUp checks bit 2 ($0004) of Battery RAM location $5F. If set, it calls
SetIntUse(0) so that mouse pointer tracking is not based on scanline interrupts. This
gives better results with accelerators, or with the Video Overlay Card. (System 6.0 does
not provide a user-visible way to change the setting of this bit.)

Fixed a problem where QDStartUp on ROM 1 with shadowing was not clearing the
bank-one screen.

Fixed a problem where QDStartUp on ROM 3 was not returning the “QD already
started” error when QuickDraw II was already started.

QDShutDown checks whether QuickDraw II Auxiliary is active and calls
QDAuxShutDown if it is. This is needed because other tools (Window Manager and
Standard File) now load and start QuickDraw II Auxiliary if it isn’t started.
QDShutDown also sets the color tables and SCBs to standard values.

InflateTextBuffer now returns errors properly if QuickDraw Auxiliary’s text
buffers could not be resized.

Animated Cursors with SetCursor

SetCursor now supports flicker-free cursors. For example, you can get a spinning
beachball cursor effect, without any annoying flicker.

To switch from one cursor in a sequence to the next, call SetCursor as usual, except
set bit 31 of the cursor pointer. This tells SetCursor not to undraw the old cursor
before drawing the new one. All cursors in a sequence must have identical sizes, hot
spots, and masks! If you set bit 31 while changing to a cursor with a different size, hot
spot, or mask, you will get “cursor droppings” on the screen.

Warning: If you set bit 31, it is your responsibility to set the bit only when the

current cursor has the same size, hot spot, and mask as the cursor you are
setting. Be defensive. If there is any chance the cursor is not already set
to the previous cursor in your animated sequence, use GetCursorAdr to
check. If it doesn’t match, do not set bit 31 on the next SetCursor call.

System 6.0 Toolbox 81 29/10/y

New QuickDraw II Calls

Get640Colors $DA04

Get640Colors returns a pointer to a 512-byte table of 32 $00s, 32 $11s, ..., 32 $FFs.

These tables can be used as “solid” pen patterns in either 320 or 640 mode. (In 640 mode
they are actually dithered patterns, but they are the 16 different apparently-solid colors
available.)

If you only wish to call SetPenPat on one of these patterns, use Set640Color.

Parameters

Stack before call

Previous contents
Space

 <—SP

Stack after call

Previous contents
tablePtr

 <—SP

Errors none

C extern pascal Ptr Get640Colors();

System 6.0 Toolbox 82 29/10/y

Set640Color $DB04

Set640Color sets the current grafport’s pen pattern to a “solid” 640-mode dithered
color (just like SetDithColor in some Pascal libraries). (In 640 mode they are
actually dithered patterns, but they are the 16 different apparently-solid colors available.)

You can use Set640Color in 320 mode, too, but it would be just as easy to use
SetSolidPenPat—so the call is named for the case where it’s useful.

Note: The pen pattern affects all QuickDraw II drawing except for text. Use

SetForeColor and SetBackColor to affect text drawing.

Parameters

Stack before call

Previous contents
colorNum

 <—SP

Stack after call

Previous contents
 <—SP

Errors none

C extern pascal void Set640Color(colorNum);
 Word colorNum;

System 6.0 Toolbox 83 29/10/y

018 QuickDraw II Auxiliary Update

New Features of QuickDraw II Auxiliary

DrawPicture

FastPort features are now disabled during DrawPicture so that pen pattern changes
(and other port parameters) work correctly when you start up QuickDraw with the
fastPort bit set.

When DrawPicture encounters an invalid picture opcode, it now returns error $121F
instead of crashing.

DrawIcon and fastPort

DrawIcon did not work well with fastPort mode on; now it does. (Certain calls,
such as InvertRect, were accidentally restricted to drawing in the icon’s rectangle if
used immediately after a DrawIcon call.)

System 6.0 Toolbox 84 29/10/y

New QuickDraw II Auxiliary Calls

GetSysIcon $0F12

GetSysIcon returns small icons representing files, devices, and other miscellaneous
icons. Some icons have separate 320- and 640-mode versions (GetSysIcon calls
GetMasterSCB to decide which one to return).

The device icons are:

5.25” disk
3.5” disk
Hard disk
AppleShare server
RAM disk
CD-ROM disk
Offline disk

The file icons are:

Folder, open or closed (file type $000F)
Application (file type $00B3 or $00FF)
Stack (file type $0055)
Document (any other file type)

Parameters

Stack before call

Previous contents
Space

flags

value

auxValue

 <—SP

Stack after call

Previous contents
iconPtr

 <—SP

Errors $1230 badGetSysIconInput

System 6.0 Toolbox 85 29/10/y

C extern pascal IconPtr GetSysIcon(flags, value, auxValue);
 Word flags, value;
 Long auxValue;

flags bits 15-3: reserved (use 0)
 bit 2: 0 = use closed folder icons
 1 = use open folder icons
 bits 1-0: type of icon to get
 00 = file type icon (value = GS/OS file type)
 01 = device icon (value = GS/OS device ID)
 10 = miscellaneous icon (see table for values)
 11 = illegal value

value File type, device ID, or other value, depending on flags bits 1-0.
 Miscellaneous icons:
 0=Desktop icon (used in Standard File)
 1=padlock icon
 2=up arrow icon
 3=down arrow icon
 4=boxed down arrow icon (used in Standard File)

auxValue When value is a GS/OS file type, auxValue is an auxiliary type.

System 6.0 Toolbox 86 29/10/y

IBeamCursor $1312

Sets the QuickDraw II cursor to an I-beam cursor. This is suitable when the cursor is
positioned over an editable text field.

The cursor comes from a resource: rCursor ID $07FF0001 for 640-mode, $07FF0101
for 320-mode.

DoModalWindow uses IBeamCursor automatically.

Parameters The stack is not affected by this call. There are no input or output

parameters.

Errors none

C extern pascal void IBeamCursor();

System 6.0 Toolbox 87 29/10/y

PixelMap2Rgn $1012

Transforms a pixel map into a QuickDraw II region. The points to be included in the
region are specified by color.

Parameters

Stack before call

Previous contents
Space

srcLocInfo
map

bitsPerPixel

colorsToInclude
include

 <—SP

Stack after call

Previous contents
theRgn

 <—SP

Errors $0433 rgnFull region is larger than 64K
 Memory Manager Errors returned unchanged

C extern pascal RgnHandle PixelMap2Rgn(srcLocInfo,

bitsPerPixel, colorsToInclude);
 LocInfoPtr srcLocInfo;
 Integer bitsPerPixel;
 Word colorsToInclude;

srcLocInfo A pointer to a QuickDraw II locInfo structure that contains the source

pixel map. PixelMap2Rgn requires a locInfo structure to determine
the size of the pixel map.

bitsPerPixel The number of bits per pixel. Normally 4 for 320 mode or 2 for 640

mode; you can also specify 4 in 640 mode so that PixelMap2Rgn will
treat two dithered pixels as one 16-color pixel. Values other than 2 or 4
are not supported.

System 6.0 Toolbox 88 29/10/y

colorsToInclude A word of bits flags, each indicating whether or not a given color
pixel should be included in the resulting region or not. Bit 0 is color 0,
etc. Only bits 0..3 are valid if bitsPerPixel is 2.

theRgn The QuickDraw II region constructed from the pixel map.

Discussion

QuickDraw II supports extensive graphics operations for regions. While a pixel map is a
collection of pixels of any color, a region is a collection of points. Any given point is
simply in the region or not in the region. Regions, being collections of points, have no
intrinsic color. However, regions are more interesting objects and can be manipulated in
ways not possible for pixel maps.

PixelMap2Rgn lets you create regions from any pixel map.

One application of PixelMap2Rgn is for a lasso tool in a graphics application, where
the user draws around a graphic object and the lasso shrinks to exactly grab the object it
surrounds. The application can use CalcMask (in QuickDraw II Auxiliary) to transform
the source pixel map into a mask, where the selected portion is white and the unselected
area is black. PixelMap2Rgn can then transform the white part of the mask into a
region containing the lassoed pixels. The application can then perform any operation on
the region, including inversion, framing, and filling. It can also use a slightly inset copy
of the region (InsetRgn) subtracted from the original region (DiffRgn) as a thin
border for a “shimmer” effect indicating the region selected.

Notes

All the coordinates of the srcLocInfo boundsRect must be nonnegative.
PixelMap2Rgn operates on an entire pixel map, and is intended to be used with
offscreen pixel maps. It is not usually useful to pass a window pointer as the
srcLocInfo.

PixelMap2Rgn is stored in a dynamic segment, so the boot disk may be needed on the
first call.

System 6.0 Toolbox 89 29/10/y

WhooshRect $1412

WhooshRect animates a “zooming” effect from one rectangle to another, as the Finder
does when you open an icon. Before the visual effect, WhooshRect calls SysBeep2
to allow for a corresponding audio effect.

Note: smallRect doesn’t actually have to be smaller than bigRect.

For best results, all four smallRect coordinates should be different from the
corresponding bigRect coordinates. WhooshRect draws using an exclusive-or pen
mode, and at times more than one intermediate rectangle is on the screen. If edges of the
intermediate rectangles overlap, they cancel each other out. It never leaves garbage on
the screen, but the effect of the animation is lost.

Parameters

Stack before call

Previous contents
flags

smallRect

bigRect

 <—SP

Stack after call

Previous contents
 <—SP

Errors none

C extern pascal void WhooshRect(flags, smallRect, bigRect);
 Long flags;
 Rect *smallRect, *bigRect;

System 6.0 Toolbox 90 29/10/y

flags bit 31: 1 = zoom out, from small rectangle to large rectangle
 0 = zoom in, from large rectangle to small rectangle
 bit 30: 1 = use local coordinates in the current port
 0 = use global coordinates
 bit 29: 1 = skip the normal SysBeep2 call
 0 = call SysBeep2($8040) for zoom-open,
 $8041 for zoom-closed
 bits 28-0: reserved (use 0)

smallRect Pointer to the first rectangle. If this is NIL, WhooshRect returns without

doing anything.

bigRect Pointer to the second rectangle. If this is NIL, WhooshRect returns

without doing anything.

Clipping

If flag bit 30 is clear (global coordinates), rectangles are drawn in a port owned by the
system, and very little clipping is done.

If flag bit 30 is set (local coordinates), rectangles are drawn in whatever port the caller
has set, so the visRgn and clipRgn of that port are used.

System 6.0 Toolbox 91 29/10/y

030 Resource Manager Update

New Features of the Resource Manager

•The resource manager now protects all open resource files from being accidentally
closed by applications. (In System 5.0.4 and earlier, only the Sys.Resources file was
protected.)

•ResourceStartUp now returns error $1E12, resDupStartUp, if the Resource
Manager has already been started up for the specified memory ID.

•Added new calls to support named resources: RMFindNamedResource,
RMGetResourceName, RMLoadNamedResource, RMSetResourceName.

•AddResource, SetResourceID, and RMSetResourceName return error $1E13,
resInvalidTypeOrID, if the specified resource type or resource ID is zero.

•The new call LoadResource2 loads a resource and provides information on the
previous state of that resource.

•LoadResource and LoadResource2 both re-lock the handle being returned if the
resource attributes say the handle was originally locked.

•It is now possible to have preload resources in Sys.Resources and actually have them
preload.

•If the resource map for Sys.Resources, on disk, has a nonzero value in the mapNext
field, previous versions of the Resource Manager would crash. A nonzero value is now
tolerated.

•Cancelling out of a LoadResource for a locked resource now works correctly. It
used to return garbage the next time you loaded that resource.

•ResourceShutDown refuses to shut down user $401E, which is the Resource
Manager itself. This search path must always remain available for the system to work
properly, so now this is enforced. ResourceShutDown returns error $1E0F,
resInvalidShutDown, if $401E is the current resource application.

•OpenResourceFile has a flag bit to override the automatic loading of preload
resources—set bit 15 of the openAccess parameter. (For example, the Finder
overrides preloading when it opens a file’s resource fork to get its rComment(1) and
rVersion(1) resources.)

•The Resource Manager no longer reports an error when operating on an empty resource.
(It used to get error $0053 because it was reading or writing zero bytes to address zero;
GS/OS allows zero-byte-long reads and writes, but it does not allow address zero.)

System 6.0 Toolbox 92 29/10/y

•GetOpenFileRefNum inputs $0000 and $FFFF now work as documented. They
were not previously implemented.

•CreateResourceFile on a file that already exists now ignores the access, filetype,
and auxiliary type parameters as documented. Sufficiently strange values used to cause
an error.

•If CloseResourceFile returns an error (such as $002B, disk write protected), there
was previously no way to close the file. Now you can set bit 15 of the
CloseResourceFile parameter to tell the Resource Manager to close the file even if
it can’t write out any changed resources or the up-to-date resource map. Use this option
carefully to avoid leaving a resource fork in an inconsistent state.

•When looking for a free location in the resource fork, the Resource Manager assumes
the fork’s free list is valid. If the large free area at the end is missing, fatal error $1E42
now occurs (previously a resource would be placed at offset zero in the fork).

•UniqueResourceID can no longer return out-of-range ID values for range $FFFF.

•MatchResourceHandle now optionally returns the resource file ID of the file the
handle belongs to. (This is important because calling HomeResourceFile to locate
the resource finds the first accessible resource of the specified type and ID, which may
not be the one you wanted.) To ask for the value, set bit 31 of the foundRec pointer;
the foundRec is then defined as follows:

 |-----------------|
+000 | resourceType | Word—Type of resource
 |-----------------|
+002 | resourceID | Long—ID of resource
 |-----------------|
+006 | fileID | Word—ID of file where resource was found
 |-----------------|

System 6.0 Toolbox 93 29/10/y

Named Resources

Four new calls support named resources, using the rResName resource format defined
in Toolbox Reference, Volume 3.

The calls are RMFindNamedResource, RMGetResourceName,
RMLoadNamedResource, and RMSetResourceName. (The RM prefix distinguishes
these Resource Manager calls from the similar HyperCard IIGS callbacks.)

Case Sensitivity

Resource names ARE case sensitive. “Splat” and “SPLAT” are two distinct names.

Names are not directly tied to resources

When working with named resources, keep in mind that a resource name is associated
with a particular resource type and ID (within a resource file).

A resource name is not directly associated with the resource, so operations like
RemoveResource and SetResourceID can easily leave a “dangling” name, or
dissociate a resource from a name.

Resource names are a convenience, but a resource name is not a property of a particular
resource.

System 6.0 Toolbox 94 29/10/y

New Resource Manager Calls

LoadResource2 $291E

LoadResource2 is like LoadResource, except that it returns information about the
previous state of the returned handle.

Parameters

Stack before call

Previous contents
Space

flags

bufferPtr

resourceType

resourceID

 <—SP

Stack after call

Previous contents
resourceHandle

 <—SP

Errors $1E03 resNoConverter No converter routine found for

resource type.
 $1E06 resNotFound Specified resource not found.
 GS/OS errors Returned unchanged.
 Memory Manager errors Returned unchanged.

C extern pascal Handle LoadResource2(flags, bufferPtr,

resourceType, resourceID);
 Word flags;
 Ptr bufferPtr;
 Word resourceType;
 Long resourceID;

flags reserved, use 0

bufferPtr Pointer to a one-word result buffer which receives the previous attributes

word of the handle, or $FFFF if the handle did not previously exist.

System 6.0 Toolbox 95 29/10/y

resourceType Resource type of resource to be loaded.

resourceID Resource ID of resource to be loaded.

System 6.0 Toolbox 96 29/10/y

RMFindNamedResource $2A1E

RMFindNamedResource takes a resource type and a resource name and finds the
resource ID of the corresponding resource. The current resource file and search depth are
respected.

If you simply want to load the resource, use RMLoadNamedResource. Since the
resource found may not be the topmost resource with the returned ID, it is simpler to let
RMLoadNamedResource load the resource from the proper file than to manipulate the
current resource file setting yourself.

Resource names are stored in rResName resoures, as described in Toolbox Reference 3,
Appendix E.

Parameters

Stack before call

Previous contents
Space

rType

namePtr

fileNumPtr

 <—SP

Stack after call

Previous contents
resourceID

 <—SP

Errors $1E10 resNameNotFound
 $1E11 resBadNameVers

C extern pascal Long RMFindNamedResource(rType, namePtr,

fileNumPtr);
 Word rType;
 Ptr namePtr;
 Word *fileNumPtr;

System 6.0 Toolbox 97 29/10/y

RMGetResourceName $2B1E

Returns the Pascal string name of the specified resource.

Resource names are stored in rResName resoures, as described in Toolbox Reference 3,
Appendix E.

Parameters

Stack before call

Previous contents
rType

rID

namePtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors $1E10 resNameNotFound
 $1E11 resBadNameVers

C extern pascal Long RMGetResourceName(rType, rID, namePtr);
 Word rType;
 Long rID;
 Ptr namePtr;

System 6.0 Toolbox 98 29/10/y

RMLoadNamedResource $2C1E

RMLoadNamedResource takes a resource type and a resource name and loads the
corresponding resource. The current resource file and search depth are respected.

Resource names are stored in rResName resoures, as described in Toolbox Reference 3,
Appendix E.

Parameters

Stack before call

Previous contents
Space

rType

namePtr

 <—SP

Stack after call

Previous contents
resHandle

 <—SP

Errors $1E10 resNameNotFound
 $1E11 resBadNameVers
 Memory Manager errors returned unchanged
 GS/OS errors returned unchanged

C extern pascal Handle RMLoadNamedResource(rType, namePtr);
 Word rType;
 Ptr namePtr;

System 6.0 Toolbox 99 29/10/y

RMSetResourceName $2D1E

Sets the name of the specified resource, first removing any existing name. The current
resource file and depth are respected.

Resource names are stored in rResName resoures, as described in Toolbox Reference 3,
Appendix E.

If namePtr points to a zero-length string, the resource’s name is removed. If an
rResName resource becomes empty, RMSetResourceName removes the rResName
resource.

Parameters

Stack before call

Previous contents
rType

rID

namePtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors $1E10 resNameNotFound
 $1E11 resBadNameVers
 $1E13 resInvalidTypeOrID

C extern pascal void RMSetResourceName(rType, rID, namePtr);
 Word rType;
 Long rID;
 Ptr namePtr;

System 6.0 Toolbox 100 29/10/y

010 SANE Update

For ROM 1, SANEVersion now returns version 3.0 for consistency with ROM 3.
There are no other changes.

System 6.0 Toolbox 101 29/10/y

007 Scheduler Update

New Features of the Scheduler

The system now clears the scheduler’s private “don't-dispatch” flag once at boot time,
just like SchBootInit does on ROM 3.

This fixes the problem where crashing in a scheduled task on ROM 1 would cause the
scheduler to stop dispatching tasks until a power-down or a self-test (just rebooting was
not sufficient).

System 6.0 Toolbox 102 29/10/y

022 Scrap Manager Update

New Features of the Scrap Manager

The Scrap Manager now permits individual scraps to exceed 64K. Previously, you could
create scraps this large, but the UnloadScrap would not write them to disk properly.

Changed ScrapStartUp to zero out the Scrap State, because on ROM 3
ScrapBootInit gets called before the GS/OS is present, and the Scrap Manager was
deciding that the scrap had already been read into memory.

The Scrap Manager no longer accidentally does a Close on reference number zero
(possibly closing files it did not open). Previously, this would happen when the Scrap
Manager tried failed to load the scrap from disk (because the Clipboard file was not
present).

The Clipboard file is now created with GS/OS file type $F9 (System file).

The new call GetIndScrap allows utilities to work with all existing scraps instead of
assuming that only previously-known scrap types are present.

System 6.0 Toolbox 103 29/10/y

New Scrap Manager Calls

GetIndScrap $1416

This call is useful for utilities that want to read all scrap types (Scrapbook-type desk
accessories need this, or they can only save scrap types they know about).

To get information on all scraps present, call GetIndScrap repeatedly with index
equal to 1, 2, etc., until GetIndScrap returns an error.

Parameters

Stack before call

Previous contents
index

bufferPtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors $1610 badScrapType Bad value for index

C extern pascal void GetIndScrap(index, buffer);
 Word index;
 Ptr buffer;

index Specifies which scrap to get (1 for the first scrap, 2 for the second, and so

on).
buffer Pointer to a 10-byte result buffer with the following format:
 +000 scrapType (word)
 +002 scrapSize (long)
 +006 scrapHandle (long)

System 6.0 Toolbox 104 29/10/y

008 Sound Tools Update

SoundVersion now returns $0303 to match ROM 3.

System 6.0 Toolbox 105 29/10/y

023 Standard File Update

New Features of Standard File

•When you insert a disk that is unformatted or contains an unrecognized file system, or
which has the same name as an online volume with files open, Standard File calls
HandleDiskInsert (see the Window Manager chapter) to let you rename, initialize,
erase, or eject the disk.

•Standard File now uses ListKey in the SFGetFile dialogs to handle jumping around
in the file list (see the List Manager section for more information on ListKey). This
means that you can select files by typing as many characters from the beginning of a
filename as you wish. (Previously, typing a letter would always jump to the first
filename starting with that letter.)

•In PutFile dialogs, the file list is hilited with a bold outline when it is receiving
keystrokes. Command-Tab alternates between the List and the edit-line being the target.
Clicking in either the List or the edit-line makes that item the target.

•If you click New Folder or Save and the name in the edit-line field is not valid for the
target file system, an alert appears suggesting a valid alternative name. You have the
choice of sticking with your old name or accepting the new one. In either case, you may
edit the name further, or change to another disk or directory, before retrying the Save or
New Folder operation.

•There’s a pop-up path menu now. Only the last section of the pathname is displayed; the
others are visible when the menu is popped up. The padlock icon comes after the
pathname segment.

•Filter procedures now have access to all GetDirEntry parameters, including the
option list.

•Standard File now allows 128 volumes to be online. Previously, it was limited to 20.

•Added new key equivalents for the Volumes button (Command-D and Command-ESC).

•Standard File’s icons come from GetSysIcon (see QuickDraw II Auxiliary).

•Long filenames are drawn narrower to allow more of the characters to be seen (uses
SetCharExtra to put one less pixel than usual between characters).

•You can no longer type colons (:) into the file name field in PutFile dialogs.

System 6.0 Toolbox 106 29/10/y

•SFStartUp returns error $17FF, sfNotStarted, if you pass zero for the work area
pointer.

•All Standard File calls other than the housekeeping calls return error $17FF,
sfNotStarted, if Standard File has not been started.

•Fixed a problem where SFMultiGet2 would occasionally return error $1705 for no
good reason.

•Fixed a problem that would occasionally cause a filename to be duplicated many times
in the file list.

System 6.0 Toolbox 107 29/10/y

034 Text Edit Update

New Features of Text Edit

Note: In 5.0.3 & later versions of TEGetText, bit 5 ($20) of the bufferDesc
parameter is the onlyGetSelection bit. This works for all data formats except
LETextBox2 format (because that would require special handling of the style
information).

•Corrected a TEScroll anomaly where scrolling to a specified character posistion
would sometimes scroll to the very end of the text. The problem only appeared when the
text was longer than 64K.

•Printable control characters (like the Apple symbols in Shaston) cause fewer problems
with word wrapping than they used to.

•Text Edit controls no longer eat Command- key presses they do not use.

System 6.0 Toolbox 108 29/10/y

012 Text Tools Update

The Text Tools version number is now 3.1 ($0301).

The calls GetInputDevice, GetOutputDevice, and GetErrorDevice no
longer leave garbage in the high byte of the deviceType result parameter.

System 6.0 Toolbox 109 29/10/y

001 Tool Locator Update

New Features of the Tool Locator

Inter-process communication

Two new calls support communication among any piece of code that wants to participate,
including applications, desk accessories, and the system.

StartUpTools/ShutDownTools enhancements

StartUpTools now knows how to load and start Media Control and MIDI Synth tool
sets, which are part of System 6.0, as well as Tool037 (which is not part of System 6.0).
You can include these tool sets in your StartStopToolsRec now.

StartUpTools goes to some trouble for your application to make tool startup visibly
smooth. If you’re starting QuickDraw and the Window Manager, it asks QuickDraw II
not to clear the screen if it’s already on (RefreshDesktop eventually wipes over the
old screen).

Instead of building the path “1/”+GET_NAME, StartUpTools now uses
LGetPathname2 on the caller’s memory ID to locate the correct resource fork. (This
makes StartUpTools work for applications with “/” in their name.)

StartUpTools startStopRefDesc bit 3 ($0008) means “open my resource fork
as-allowed instead of read-only.”

StartUptools or ShutDownTools startStopRefDesc bit 4 ($0010) means
skip starting up the Resource Manager. If you have already started the Resource
Manager, you must set this bit! This way StartUpTools does not attempt a duplicate
ResourceStartUp call, and ShutDownTools does not attempt a premature
ResourceShutDown. StartUpTools also doesn’t try to pre-allocate the Super Hi-
res screen memory if you set this bit.

ShutDownTools always asks QuickDraw to leave the Super Hi-res screen turned on if
ShutDownTools determines that a Quit call will be handled by GS/OS rather than by a
shell program (the test is whether GS/OS’s idea of the current application memory ID
matches the QuickDraw memory ID). GS/OS handles making the text screen visible if
necessary.

ShutDownTools startStopRefDesc bit 2 ($0004) means “leave the Super Hi-res
screen turned on, and don’t mess with it.” If you leave this bit clear, ShutDownTools
erases the menu bar to a white rectangle before shutting down, so that the previous
application’s menus are not visible while the next application is starting up.

Tool Set Versions

System 6.0 Toolbox 110 29/10/y

Changed the way StartUpTools, LoadTools, and LoadOneTool examine bits 14
through 12 of version words. If one of these bits is off in the requested version, it is
ignored in the actual version.

SaveTextState and RestoreTextState

SaveTextState now preserves and enables text page one shadowing, and
RestoreTextState restores the status of text page one shadowing.

RestoreTextState(NIL) takes no action (in case SaveTextState returned NIL
because it could not allocate memory).

TLMountVolume

TLMountVolume has always required QuickDraw and Event Manager to be started.

UnloadOneTool

Changed UnloadOneTool to return no error when unloading a tool that already wasn’t
there, but which had an entry in the default TPT. It was usually returning error $00FE
before.

Message Type $0011, pathnames to open or print

There is a new message type, $0011, for passing the GS/OS-string pathnames of files to
open or print (any number of pathnames is allowed, including zero).

Finder 6.0 uses this in addition to message type $0001 (Pascal string pathnames of files to
open or print). The format of message $0011 is as follows:

+000 LONG used by the system
+004 WORD message type ($0011)
+006 WORD printFlag ($0000 = Open, $0001 = Print)
+008 C1String pathname of first file (class-one GS/OS input string)
+xxx C1String pathname of second file
 ...
+yyy WORD $0000 terminates list (a null-string pathname)

Note: When MessageCenter deletes message $0001, it automatically deletes message
$0011, too.

System 6.0 Toolbox 111 29/10/y

New Tool Locator Calls

AcceptRequests $1B01

Provide straightforward inter-process communication. The system keeps a list of
procedure pointers associated with all the processes that can receive requests.

To notify the system that you can receive requests, call AcceptRequests. When you
can no longer accept requests, call AcceptRequests, with requestProc=NIL and
the same nameString and userID you passed the first time.

Another way to remove a request proc is to pass nameString=NIL,
requestProc=NIL, specifying only a userID. This removes all request the
procedures with the specified userID.

Warning: If you neglect to remove your request procedure before your application quits,

or before your code is otherwise left dangling, the system will crash.

Only one AcceptRequests call will succeed for each nameString. If it is useful
for more than one copy of your program to exist in the system, generate a unique
NameString at run-time by concatenating an ASCII representation of your user ID to the
end of your string. (You can also have multiple request procedures in your product, as
long as they have separate names.)

Since requests can be sent to a select group of request procs based on prefix strings of the
name strings, choose your strings carefully. The recommended format for nameString is
“YourCompany~YourProduct~”. This is to support application-specific request types (in
the range $8000..FFFF) that apply to request procedures that match a given prefix string
(see SendRequest).

You may wish to include your product’s version number at the end of your request
procedure’s name (“YourCompany~YourProduct~v1.2~”). You will normally not want
to include the version number when sending requests to your named procedures.

In specialized cases, like supporting fourth-party modules for your applications, you will
need a different convention, like “YourProductName~FourthPartyName~
TheirProductName~”. The important point is that request codes $8000 and up are
defined within prefix-string domains.

System 6.0 Toolbox 112 29/10/y

Parameters

Stack before call

Previous contents
nameString

userID

requestProc

 <—SP

Stack after call

Previous contents
 <—SP

nameString: AcceptRequests makes its own copy of the string; your copy does

not have to stay around after the call completes.

Errors: $0113 srqNameTooLong name must be 62 characters or less
 $0121 srqDuplicateName

C extern pascal void AcceptRequests(nameString, userID,
 requestProc)
 Pointer nameString;
 Word userID;
 WordProcPtr requestProc;

For debugging purposes only: The list of current request procedures is currently kept in
the Message Center, one named message per request proc. Each message has a $8000+
Type and has this form:

 STRING $FF “>“ Company~Product~
 (The string has a length byte)
 WORD UserID
 LONG RequestProcPtr

System 6.0 Toolbox 113 29/10/y

Parameters to a Request Procedure

Parameters

Stack when request procedure gets control

Previous contents
space

reqCode

dataIn

dataOut

RTL

 <—SP

Stack just before the request procedure executes an RTL

Previous contents
result

RTL

 <-SP

result:

Bit 15 = handled the request
Bits 14-0 = reserved (use 0)

The result space is pre-initialized to zero, so the request procedure doesn’t have to store
anything there to reject the request.

Bank and Direct Page registers

The Bank and Direct Page registers are undefined on entry to a request procedure. If you
normally use the Bank register to access your global variables, you must save, set, and
restore it, or access your globals with long addressing.

To help track down erroneous request procedures, the Bank and Direct Page registers are
worse than undefined. Bank is $FE (ROM), and Direct Page is $CCCC (in peripheral-
card I/O space). A request procedure accidentally using these values will almost
certainly fail dramatically.

System 6.0 Toolbox 114 29/10/y

SendRequest Request codes

Codes $0000..7FFF have global meaning and are defined by Apple.
Codes $8000..FFFF are defined separately for specific prefix strings. Invent an
appropriate prefix string for your product or family of products and you can assign your
own codes in this range.

$0001 = systemSaysBeep (used by SysBeep2 in the Miscellaneous Tools)
$0002 = systemSaysUnknownDisk (see Window Manager, under

HandleDiskInsert)
$0003 = srqGoAway (see below)
$0004 = srqGetrSoundSample (see Sound Control Panel documentation)
$0005 = srqSynchronize (wait for asynchronous operations to complete, such as

sounds played with srqPlayrSoundSample; dataIn and dataOut are
reserved and should be zero)

$0006 = srqPlayrSoundSample (see Sound Control Panel documentation;
dataIn is a rSoundSample handle or a special value)

$0008 = systemSaysNewDeskMsg (see the Window Manager chapter)
$000E = systemSaysEjectingDev (sent by HandleDiskInsert; low word

of dataIn = device number)
$0502 = systemSaysDeskStartUp—at DeskStartUp time (dataIn and

dataOut are reserved)
$0503 = systemSaysDeskShutDown—at DeskShutDown time (dataIn and

dataOut are reserved)
$051E = systemSaysFixedAppleMenu—after FixAppleMenu adds items to

the Apple menu
$0F01 = systemSaysMenuKey—MenuKey got a key it didn’t find a match for

(see Menu Manager)
$01xx = Reserved for finderSaysXXX; see Finder 6.0 documentation.

The srqGoAway request

If you receive the srqGoAway code, someone is asking for permission to call
UserShutDown on you, to remove you from memory. You are not required to accept
this request.

If you do accept an srqGoAway request, you must fill in the resultID field of
dataOut either with zero (indicating it is not okay to remove you from memory) or with
your userID. dataIn is reserved (should be passed zero and ignored by accepting
procedure until some bits are defined). The dataOut buffer has the following format:

 +000: recvCount word filled in by SendRequest
 +002: resultID word filled in by the accepting procedure (memory ID to be

used with AcceptRequests and UserShutDown, or
zero if the accepting procedure refuses to go away)

 +004: resultFlags word filled in by accepting procedure

System 6.0 Toolbox 115 29/10/y

 bit 15: 1=OK to shut down as Restartable, 0=not OK
 bits 14-0: reserved, return 0

System 6.0 Toolbox 116 29/10/y

Sample request procedure skeleton in assembly

OldDPage equ 1
RTL1 equ 3
DataOut equ 6
DataIn equ 10
Request equ 14
Result equ 16

SampleReqProc phd
 tsc
 tcd

 lda <Request
 cmp #myRequestType
 bne @exit

 ...
 lda #$8000
 sta <Result

@exit pld
 lda 2,s
 sta 12,s
 lda 1,s
 sta 11,s
 ply
 ply
 ply
 ply
 ply
 rtl

Installing a request procedure from assembly:

 pea ^myNameString
 pea myNameString
 pha
 _MMStartUp ;get my memory ID
 pea ^mySampleReqProc
 pea mySampleReqProc
 _AcceptRequests
 ...

myNameString dc.b 24,'CompanyName~ProductName~'

Removing a request procedure from assembly:

 pea ^myNameString
 pea myNameString
 pha
 _MMStartUp ;get my memory ID
 pea 0
 pea 0
 _AcceptRequests
 ...

Sample request procedure in C

pascal unsigned myRequestProc(request, dataIn, dataOut)
 unsigned request;
 long dataIn;
 long dataOut;
{

System 6.0 Toolbox 117 29/10/y

 unsigned oldB = SaveDB(); /* may be needed for global var access
*/
 unsigned result = 0;

 switch(request)
 {
 case finderSaysHello:
 result = handleHello();
 break;

 case finderSaysGoodbye:
 result = handleGoodbye();
 break;

 case finderSaysExtrasChosen:
 result = handleExtrasChosen((unsigned) dataIn);
 break;
 }

 RestoreDB(oldB);
 return(result ? 0x8000:0);
}

Installing a request procedure from C:
 AcceptRequests("\pCompanyName~ProductName~", MMStartUp(), myRequestProc);

Removing a request procedure from C:
 AcceptRequests("\pCompanyName~ProductName~", MMStartUp(), 0L);

Sample request procedure in Pascal

{ use compiler option to force long global addressing, if appropriate }
function myRequestProc(request: integer; dataIn: univ longint;
 dataOut: univ longint): integer;
var
 result: integer;
begin
 result := 0;
 case request of
 finderSaysHello:
 result := handleHello;
 finderSaysGoodbye:
 result := handleGoodbye;
 finderSaysExtrasChosen:
 result := handleExtrasChosen(LoWord(dataIn));
 end; { case }
 if result <> 0 then result := $8000;
 myRequestProc := result;
end;

Installing a request procedure from Pascal:
 AcceptRequests('CompanyName~ProductName~', MMStartUp, @myRequestProc);

Removing a request procedure from Pascal:
 AcceptRequests('CompanyName~ProductName~', MMStartUp, NIL);

System 6.0 Toolbox 118 29/10/y

GetMsgHandle $1A01

Returns the handle to a messsage in the Message Center. The returned handle is NIL if
there’s an error. Otherwise it’s a handle to the system’s copy of the message.

An application should not modify the message handle and should not assume that it’s
locked (it isn’t), but it can look in there to find the data and the message type and
contents (the Type word is at offset +4 in the block). If the type is $8000 or above, the
message begins with a Pascal String name.

Note: To delete a message if you don’t know the message type, use GetMsgHandle,
look at offset 4 in the block to get the message type, and feed that to
MessageCenter(3,type,NIL).

Parameters

Stack before call

Previous contents
Space

flags

messageRef

 <—SP

Stack after call

Previous contents
theHandle

 <—SP

Errors $0111 messNotFound

C extern pascal Handle GetMsgHandle(flags,messageRef);
 Word flags;
 Long messageRef;

flags:

Bits 15-2 are reserved.
Bits 1 and 0 specify the type of reference in messageRef:

00 = get the messageRef-th message, counting from 1 = first message
01 = get the message with Type matching the low word of messageRef
10 = get the message with name messageRef points to (Pascal string)
11 = reserved

System 6.0 Toolbox 119 29/10/y

SendRequest $1C01

Sends the specified request to zero or more qualifying request procedures that have been
registered with AcceptRequests. (See discussion under AcceptRequests.)

This is a synchronous operation; SendRequest returns after calling zero or more
request procedures.

Parameters

Stack before call

Previous contents
reqCode

sendHow

target

dataIn

dataOut

 <—SP

Stack after call

Previous contents
 <—SP

Errors $0120 reqNotAccepted nobody accepted the request
 $0122 invalidSendRequest bad combination of reqCode & target

C extern pascal void SendRequest(reqCode, sendHow, target,

dataIn, dataOut);
 Word reqCode, sendHow;
 Long target, dataIn;
 Ptr dataOut;

reqCode: See table under AcceptRequests. The request code is passed to all the
selected request procedures so they can decide what, if anything, to do with the input and
output data buffers.

The sendHow parameter:

Bit 15: 1 = Stop after first acceptance (stopAfterOne).
 0 = Send to any number of request procedures
Bits 14-2: reserved (use 0).
Bits 1-0:
 00 = send to all ReqProcs, sendToAll (target is reserved and should be zero)

System 6.0 Toolbox 120 29/10/y

 01 = select ReqProcs by prefix of name, sendToName (target points to a Pascal
string)

 10 = select a ReqProc by User ID, sendToUserID (the User ID is the low
word of target)

 11 = reserved

The dataIn parameter is defined separately for each request code. It can be a pointer or
handle to some other data when that’s convenient (the lifetime and ownership of that data
is defined by the request code).

The dataOut buffer has this form:

+000 Word recvCount—number of times the message was accepted
+002 ... Depends on the request code

If dataOut is NIL, SendRequest does not attempt to fill in the recvCount field.
So if the recipient does not require an output buffer and you don’t care how many times
the request is accepted, you may pass NIL for dataOut.

Requests are offered to request procedures starting with the most-recently-installed
procedure and working backwards. In practice, this usually means that the system
software can provide a standard behavior, that third-party desk accessories and
initialization files can override the standard behavior, and that the current application can
override everything.

By the way, the recvCount word is only filled in when the SendRequest call is
finishing up. A request procedure cannot examine the word to determine how many
procedures have handled the request so far.

System 6.0 Toolbox 121 29/10/y

033 Video Overlay Update

New Features of the Video Overlay tools

•VDGGStatus did not previously work with selector value $11 (LineInterrupts);
it always crashed when given that selector value.

Now, in tool set version $0103, it works properly.

System 6.0 Toolbox 122 29/10/y

014 Window Manager Update

New Features of the Window Manager

•WindStatus now returns with the carry set and A=0 when the Window Manager is
started up but a window update is in progress (BeginUpdate has been called more
times than EndUpdate). This causes GS/OS to put disk-request alerts on the text screen
instead of calling AlertWindow, when a window update is in progress.

•Fixed window title clipping so that it doesn’t draw onto the desktop if the window is
extremely narrow (this is still a cosmetic problem for ROM 3).

•GetSysWFlag and GetWKind are now guaranteed to return FALSE when passed a
window pointer of NIL. (Previously, the result was unpredictable.)

ErrorWindow enhancements

•Most ErrorWindow dialogs look nicer. For example, icons are included, and the
button typically says “Continue” rather than “OK” (after the user gets an error, things are
generally not OK!).

•When ErrorWindow calls AlertWindow, it sets alertFlags bit 5 to put the
button or buttons on the right.

•When ErrorWindow is called with an error in the range $0000 to $00FF, it calls
SysBeep2 with a beepType of $CE00 to $CEFF, so that system extensions can
provide audio feedback after the dialog draws. For errors not in the $0000 to $00FF
range, ErrorWindow calls SysBeep2($CEFF).

•ErrorWindow now correctly returns with the carry flag clear if no error occured.

AlertWindow enhancements

•AlertWindow no longer hangs when there is a caret (^) in the message string.

•AlertWindow now allows the separator character to appear inside substitution strings
with no side effects. Such characters are never treated as separators, so there is no need
to do special processing.

•AlertWindow is now able to refresh the contents of its window (for example, if the
window is temporarily obscured by the Video Keyboard window).

•The standard AlertWindow icons are now colorful (they come from Sys.Resources).

•When the Disk-swap icon (icon “6”) is used, AlertWindow automatically cooperates
with GS/OS to watch for the user inserting a disk. When it notices an insertion, it

System 6.0 Toolbox 123 29/10/y

automatically blinks the default button and returns to the caller. (There is a flag bit to
enable this behavior without using a disk-swap icon.)

•Nearly all buttons appearing in AlertWindow have key equivalents. Return is
equivalent to the bold-outlined default button, as always. Esc and Command-period are
equivalent to a button with the name “Cancel”. All other buttons get their title’s first
letter as their key equivalent (in both upper- and lower-case if it’s a letter).

(A button other than “Cancel” or the default button receives no key equivalent if its first
letter is the same as the first letter of any other button. Leading blanks are ignored.)

•Bit 3 ($0008, awTextFullWidth) in the alertFlags parameter makes
AlertWindow ignore the width of the icon when computing the rectangle for the text
(this provides more control when centering text).

•AlertWindow sometimes calls SysBeep2 with a beepType computed from the
icon number in the alert string. In some cases, the call happens only if bit 4 ($0010,
awForceBeep) in the alertFlags parameter is set.

Icon# Meaning SysBeep2 call
0 none $C050 if flag bit 4 set
1 custom none
2 Stop $C052
3 Note $C053 if flag bit 4 set
4 Caution $C054
5 Disk none
6 Disk-swap $C030 (always)

•Bit 5 ($0020, awButtonLayout) in alertFlags makes AlertWindow position
the buttons in the latest cool way. If there’s one button, it goes in the lower right. If
there are two, they are clustered in the lower right. If there are three, the first one is way
on the left, and the last two are clustered on the right. (See Inside Macintosh VI chapter 2
and Human Interface Note #10.)

•Bit 6 ($0040, awNoDevScan) in alertFlags makes AlertWindow skip the initial
call to ScanDevices, where it ignores any as-yet-unnoticed disk inserts. GS/OS will
set this bit when asking for a disk to be inserted, so that if you inserted one in a device it
just finished polling, AlertWindow notices it with no further user action.

•Bit 7 ($0080, awNoDisposeRes) in alertFlags is defined when the alert string is
passed by resource ID. This bit makes AlertWindow release the resource to purge
level 3 instead of disposing of it completely. If your resource is locked and you set this
flag bit, your resource will remain in memory.

•Setting bit 8 ($0100, awWatchForDisk) in alertFlags makes AlertWindow
watch for disk insertions, just like when you use the disk-swap icon.

System 6.0 Toolbox 124 29/10/y

•Setting bit 9 ($0200, awIconIsResource) in alertFlags indicates that the four
imbedded icon-pointer bytes are the resource ID of an rIcon resource, rather than a
pointer to an PaintPixels-style icon. Only set this bit when imbedding icon
information in the alert string. Note: AlertWindow assumes that the
LoadResource call for the icon will succeed. You can make sure it will by pre-
flighting it (do the LoadResource yourself first).

•Setting bit 10 ($0400, awFullColor) in alertFlags sets the alert window’s font
flags to $0004 to allow 16-color text in 640 mode.

Desktop(checkForNewDeskMsg)

Selector 8, checkForNewDeskMsg, to the Desktop call causes the system to re-
check the MessageCenter for a new desk message. (This is not a new feature.)

In System 6, Desktop(checkForNewDeskMsg) calls SendRequest with request
code $0008, systemSaysNewDeskMessage so that applications with custom
desktop-drawing routines can easily discover that there may be a new desktop pattern or
picture.

System 6.0 Toolbox 125 29/10/y

For fakeModalDialog Users

The features of the Developer Technical Support fakeModalDialog tool set (version
1.0) are now present in the Window Manager, Control Manager, and QuickDraw II
Auxiliary.

The following table summarizes where the various calls went. The new calls are in the
Window Manager except as noted. Several new calls begin with “MW” for “Modal
Window.”

fakeModalDialog call System 6.0 call
fakeModalDialog DoModalWindow
fmdEditMenu MWSetUpEditMenu
fmdFindCursorCtl FindCursorCtl
fmdGetCtlPart MWGetCtlPart
fmdGetError no equivalent (check toolbox error codes directly)
fmdGetIBeamAdr no equivalent (use IBeamCursor, GetCursorAdr)
fmdGetMenuProc MWSetMenuProc (returns previous value)
fmdIBeamCursor IBeamCursor (QuickDraw II Auxiliary)
fmdInitIBeam no equivalent
fmdLEGetText GetLETextByID (Control Manager)
fmdLESetText SetLETextByID (Control Manager)
fmdSetIBeam no equivalent
fmdSetMenuProc MWSetMenuProc
fmdStdDrawProc MWStdDrawProc
fmdWhichRadio FindRadioButton (Control Manager)

System 6.0 Toolbox 126 29/10/y

New Window Manager Calls

DoModalWindow $640E

DoModalWindow handles user interaction in a window containing extended controls.
Doing modal dialogs with DoModalWindow is much more flexible than using the
Dialog Manager.

Modal dialogs handles by DoModalWindow can optionally be movable (they can be
dragged by their title bar, and they also have an “alert frame” inside). You can also let
the user bring desk accessories in front or the modal dialog. The dialog is still modal in
that no other application windows can be selected until the dialog is dismissed.

Note: DoModalWindow is very similar to the fakeModalDialog call in the DTS

Libraries and Tools. See the section For fakeModalDialog Users earlier in this
chapter.

Here is a typical sequence involving DoModalWindow:

1. Create a window using NewWindow or NewWindow2. Create extended controls

along with it, or use NewControl2 to create them separately.

2. Call DoModalWindow repeatedly. It returns even if nothing interesting happened.

If the user did something, the result from DoModalWindow tells you what.

3. When the user finally does something to dismiss your window (like clicking OK or

Cancel), call retrieve any information needed from the controls—radio button states
(FindRadioButton), check box states (GetCtlValue), text field contents
(GetLETextByID, TEGetText), etc.—and then use CloseWindow to close the
window.

4. If there were any Edit Line or Text Edit fields in your winodw, DoModalWindow

may have left the cursor set to an I-Beam. Call InitCursor or SetCursor to
change it to something known.

System 6.0 Toolbox 127 29/10/y

Parameters

Stack before call

Previous contents
Space

eventPtr

updateProc
standard

eventHook

beepProc
description)

flags

 <—SP

Stack after call

Previous contents
ID

 <—SP

Errors none

C extern pascal Long DoModalWindow(eventPtr, updateProc,
 eventHook, beepProc, flags);
 EventRecordPtr eventPtr;
 VoidProcPtr updateProc, eventHook, beepProc;
 Word flags;

eventPtr The address of an extended task record to be used for calls to

GetNextEvent.

 In 6.0, DoModalWindow does not call TaskMaster, so don’t expect

all the Task Record fields to be filled in. In particular, DoModalWindow
does not count multiple clicks for you (wmClickCount does not get set).

updateProc Pointer to a routine to be called when the modal dialog window needs to

be updated. This address is stored in the window’s wContDraw field. If
this address is NIL, DoModalWindow stores the address of the standard
draw procedure (MWStdDrawProc), which calls the Control Manager
routine DrawControls and draws an interior alert frame if appropriate.

eventHook The address of a routine to be called with the results of GetNextEvent

(or NIL if none). Your event hook procedure can look in the event record

System 6.0 Toolbox 128 29/10/y

pointer to by eventPtr and change fields as necessary. The event hook
routine receives a single pointer on the stack, which is must remove before
returning with an RTL.

 If bit 31 of eventHook is set, DoModalWindow translates Command-

period keypresses into Escape keypresses before calling any eventHook
routine. (It’s okay to pass $80000000 to translate Command-periods but
not provide an event hook routine.)

beepProc Pointer to a routine to be called when the user clicks outside the modal

dialog box. If this is NIL, DoModalWindow calls the Miscellaneous
Tools routine SysBeep2 with beepType $0004.

 If beepProc is -1 ($FFFFFFFF), DoModalWindow does nothing. You
can use this routine to alert the user in different ways, like playing custom
sounds or flashing the menu bar.

flags Bit flags indicating how the modal dialog box should behave.

mwMovable bit 15 Indicates whether or not the modal dialog box should

be a movable modal dialog box. Regardless of this
bit’s setting, the window must have a drag region or it
cannot move.

 0 = Dialog box is not movable
 1 = Dialog box is movable if it has a drag region (title

bar)

mwUpdateAll bit 14 Indicates whether DoModalWindow should handle

update events for all windows or just the frontmost
application window, which is the dialog box.

 DoModalWindow calls the routine in the
wContDraw field of the window record to update
other windows; all windows must have either NIL or a
valid content-draw procedure in their wContDraw
fields.

 0 = Update only the dialog window
 1 = Update all application windows as needed
 Note: System windows (NDAs, for example)

automatically update during GetNextEvent,
regardless of the mwUpdateAll setting.

reserved bits 13-6 Reserved for future expansion. Must be set to zero.

mwWantActivate bit 5 Indicates whether DoModalWindow should return

activate events to the caller.
 0 = handle activates internally and then process another

event without returning to the caller (this is faster)
 1 = return to the caller after handling an activate event

System 6.0 Toolbox 129 29/10/y

mwDeskAcc bit 4 Indicates whether DoModalWindow should
automatically handle desk accessories.

 0 = Don’t handle desk accessories
 1 = Automatically handle desk accessories

mwIBeam bit 3 Indicates whether DoModalWindow should

automatically use the I-beam cursor when the hot spot
is over an Edit Line or Text Edit control.

 0 = Use an arrow cursor everywhere
 1 = Use an I-beam cursor over editable text controls

mwMenuKey bit 2 Indicates whether menu key events should be treated as

menu events first. DoModalWindow will handle
standard editing menu key events even if the menu key
events are diabled. All key events will be treated as
regular key-down events if MenuKey returns FALSE.

 0 = Treat menu key events as key down events
 1 = Treat menu key events as menu events

mwMenuSelect bit 1 Indicates whether the user can pull down menus.

DoModalWindow handles standard editing menu
selections for Edit Line and Text Edit controls
automatically.

 0 = Don’t allow pull-down menu selections
 1 = Allow pull-down menu selections

mwNoScrapForLE bit 0 Indicates whether cut, copy, and paste operations on

Edit Line controls should use the Scrap Manager. Not
using the desk scrap means that text cut or copied from
Edit Line controls can’t be pasted into Text Edit
controls; however, this may be useful when trying to
protect a large desk scrap from being accidentally
overwritten.

 0 = Use the desk scrap for Edit Line editing
 1 = Don’t use the desk scrap for Edit Line editing

ID An indication of what action the user took. If the user selected a control,

this field is the control ID. If the user selected a menu item, the high word
of ID is the menu ID and the low word of ID is the menu item ID. To
distinguish between control IDs and menu selections, bit 31 is set if a
menu was selected. Therefore, all control IDs used in the modal dialog
window must have bit 31 clear and all menu IDs used with the modal
dialog window must have bit 15 clear, or you will be unable to distinguish
control selections from menu selections. (If both pull-down menus and
menu key events are disabled in flags, your control ID values may have bit
31 set with no ill effects.)

System 6.0 Toolbox 130 29/10/y

 If ID is zero, you can examine the event record at eventPtr to see what
happened (for example, a keypress or mouse click not claimed by any
control, or an update or activate event).

 Note that when a hit on a control is returned, DoModalWindow has put

the Control Handle into the TaskData2 field of your extended task
record.

Differences between fakeModalDialog and DoModalWindow

If you set bit 31 of the eventHook procedure pointer, DoModalWindow automatically
converts Command-period keypresses into Escape keypresses. After that, it still calls
your event hook routine if the rest of the pointer is non-NIL.

DoModalWindow calls SysBeep2($0004) if you click outside the dialog window
inappropriately.

DoModalWindow uses an event mask of $0FFF when it calls GetNextEvent. It used
to use $FFFF, so it was claming app1..app4 events, which was generally not appropriate.

System 6.0 Toolbox 131 29/10/y

FindCursorCtl $690E

Note: FindCursorCtl is very similar to the fmdFindCursorCtl call in the DTS

Libraries and Tools. See the section For fakeModalDialog Users earlier in this
chapter.

Returns the handle for the control beneath a given point. DoModalWindow uses this
routine in I-beam cursor handling; if the control under the cursor is an Edit Line or Text
Edit control, DoModalWindow changes to an I-beam cursor.

Note that the xLoc and yLoc values are in local coordinates of the specified window.

FindCursorControl does not care about the hilite state of a control. It treats
inactive controls (hilite $FF) just like any other controls.

Parameters

Stack before call

Previous contents
Space

ctlHandlePtr

xLoc

yLoc

windPtr

 <—SP

Stack after call

Previous contents
partCode
point

 <—SP

Errors none

C extern pascal unsigned int FindCursorCtl(ctlHandlePtr,

xLoc, yLoc, windPtr);
 CtlRecHndlPtr ctlHandlePtr;
 Integer xLoc;
 Integer yLoc;
 WindowPtr windPtr;

System 6.0 Toolbox 132 29/10/y

GetAuxWindInfo $630E

GetAuxWindInfo returns a pointer to a block of auxiliary data for a specified window.
If the window doesn’t have an auxiliary info record yet, one is created and filled with
zeroes.

The auxiliary window record is for the system’s convenience, but some fields may be set
by applications and utilties. (See the Desk Manager Update.)

Parameters

Stack before call

Previous contents
Space

windPtr

 <—SP

Stack after call

Previous contents
auxInfoPtr

 <—SP

Errors $0201 could not allocate memory

C extern pascal Ptr GetAuxWindInfo(theWindow);
 Ptr theWindow;

Here is Auxiliary Window structure:

+000 Word size in bytes (currently 28; may grow in the future)
+002 Word *bank register value (low byte of word)
+004 Word *direct-page register value
+006 Word *resource app value
+008 Long *old update region handle
+012 Long *old port (for EndUpdate)
+016 Long *window layer (for Windoid support)
+020 Word min vertical size for System window
+022 Word min horizontal size for System window
+024 Long NDA Structure Pointer (see the Desk Manager update)

Fields marked with an asterisk (*) are reserved for future use.

System 6.0 Toolbox 133 29/10/y

HandleDiskInsert $6B0E

HandleDiskInsert lets an application know about disks the user has inserted or
ejected. When an inserted disk cannot be read or identified, the user gets a chance to
initialize the disk.

When a disk is not claimed by any installed file system, HandleDiskInsert calls
SendRequest to see if the file system can be identified. If it can, the procedure
accepting the request gives relevant information to the user and then tells
HandleDiskInsert whether to eject the disk, leave it online, initialize it, or erase it.

The standard system routine for identifying unrecognized disks is discussed in detail
below. Applications and utilities may with to install AcceptRequest procedures to
identify additional disk formats.

When a duplicate disk is inserted, the user gets a chance to rename it.

Parameters

Stack before call

Previous contents
Space

Space

flags

devNum

 <—SP

Stack after call

Previous contents
resultFlags

resultDevNum

 <—SP

Errors GS/OS errors returned unchanged

C extern pascal long HandleDiskInsert(flags, devNum);
 word flags, devNum;

flags Tells HandleDiskInsert how to proceed.

bit 15 (hdiScan): 1 = scan devices looking for inserts and ejects

System 6.0 Toolbox 134 29/10/y

bit 14 (hdiHandle): 1 = identify a disk and handle user interaction if
the disk is not usable

bit 13 (hdiUpdate):
 1 = update the status of a particular device or all devices (most

applications have no need for this)
bit 12 (hdiReportEjects):
 1 = report any detected disk-ejects as well as inserts
 0 = report only inserts, not ejects
bit 11 (hdiNoDelay):
 1 = bypass the normal 1-second scanning delay; scan immediately
 0 = scan only if at least 60 ticks have elapsed since the previous

scan
bit 10 (hdiDupDisk):
 1 = prompt user to rename or eject disk, as if the Volume call

returned a duplicate-disk error (if you set this bit, you must also set
bit 14, and devNum must be valid)

 0 = don’t simulate a duplicate-disk error
bit 9 (hdiCheckTapeDrives):
 1 = scan Apple SCSI tape drives
 0 = do not scan Apple SCSI tape drives
 (This bit applies to scanning and to updating the status of a

particular tape drive device.)
bit 8 (hdiUnreadable): 1 = the disk being processed is known to be

unformatted (simulate an I/O error to save time)
bits 7-1: Reserved, use 0.
bit 0 (hdiMarkOffline): 1 = Mark all devices as offline, so that disk

inserts are reported for all already-online volumes

devNum Normally zero. Pass a nonzero device number if you already detected an

insert & want the system to check it out & possibly ask the user to format
it (flag bit 15 clear, 14 set); or if you are informing the system that you
have already taken care of the new status of a particular device (flag bit 13
set).

resultDevNum the device number of a device that was inserted or ejected. Zero if

nothing happened, or if the user chose to Eject a disk that was discovered
to be inserted.

resultFlags Bits 15-2: Reserved (ignore).
 Bit 1 = set if resultDevNum represents a disk that the user elected to

format.
 Bit 0 = set if resultDevNum is an ejection.

System 6.0 Toolbox 135 29/10/y

Discussion

Scanning for Inserts and Ejects

Scanning occurs only if flag bit 15 is set. Once an insertion is detected, it is either
handled as described in the next section, or the device number is returned directly to the
application (depending on flag bit 14).

• When scanning, Apple 5.25 devices are ignored, as are character devices.
• Block devices with non-removable media are still scanned, since it’s important for some
applications to get a “first time” insert for those devices.
• If 60 ticks have not elapsed since the last time HandleDiskInsert scanned devices,
no scanning is performed. You can bypass this check by setting flag bit 11.
• HandleDiskInsert keeps an internal table recording its idea of the online/offline
status of each device. When a device’s status differs from the value recorded in this
table, an insert or eject has occurred. This table is owned by the current application, not
by desk accessories or other system components. At WindStartUp time, the table is
initialized to show the current status of every device.

Handling an Insertion

Handling of an insertion occurs only if flag bit 14 is set. The device to handle comes
from a scan as described above or is passed in as the devNum parameter, depending on
the setting of bit 15.

• When an insert is detected, it does a Volume call on the device. If there’s no error,
keep looking for additional insertions if bit 15 is set. If there’s nowhere else to look,
return with no error.
• If Volume returns an I/O error, call AlertWindow asking the user to Eject or Initialize
the disk.

• If the user elects to Eject, make the DControl Eject call to get rid of it.
• If the user elects to Initialize, make the GS/OS Format call to format it (letting
the user name the disk and specify the file system & format options within the
Format call).
• If they cancel out of the format dialog, eject the disk and return no error.
• If the format is successful, return the device number as the resultDevNum.

•If Volume returns an unrecognized-volume error, proceed as described under
“Identifying Unknown Disks.”
•If Volume returns a Duplicate Volume Name error and it is possible to rename the
volume, give the user a chance to rename the disk, if possible.
• If the Volume call returns a strange error, leave it online, return the device number to
the caller, and return the Volume error to the caller.

System 6.0 Toolbox 136 29/10/y

Identifying Unknown Disks

When the Volume call returns error $52 (unknown file system), HandleDiskInsert
calls SendRequest with request code $0002, systemSaysUnknownDisk, to give
utilities a chance to identify the disk and put up a special dialog. The low word of
dataIn contains the GS/OS device number of the device in question; the high word is
reserved and should be ignored. dataOut points to a buffer with the following format:

+000 recvCount Word used by SendRequest
+002 reserved Word reserved
+004 disposition Word result

disposition tells HandleDiskInsert what to do with the disk. Legal values are:
$FFFF leave the volume online even though its was unrecognized. Report no

error to the caller.
$0000 eject the device
$0001 make a GS/OS Format call on the device, letting the user choose the

name, file system, and formatting options
$0002 make a GS/OS Erase call on the device, letting the user choose the

name and file system

If the systemSaysUnknownDisk request is not accepted, HandleDiskInsert
puts up an AlertWindow reading:

Using the installed File System Translators, GS/OS does not recognize
this disk (in device .BLAHDEBLAH). Do you want to initialize it?

There are two buttons: a default Eject button, and an Initialize button (the action button,
in the lower right). Option-initialize means Erase, as above.

(To simplify the user’s choice, Erase is not presented as a separate button. If it were an
explicit choice, the system would have to explain the risks of an Erase over an Initialize;
users may not realize they have no guarantee that all the blocks on their disk are usable if
they choose Erase.)

When call completes, the cursor is set to the same thing it was before. During the call,
Arrow and Watch cursors are used.

The System UnknownDisk Procedure

The system installs a AcceptRequests procedure at boot time. When this procedure
receives a request to identify a disk, it checks for the following file systems. If the file
system can be identified and the corresponding file system translator is not already
installed, the procedure displays a special message to the user, gets the user’s response,
and accepts the request.

Here are the messages that can be displayed:

The disk in device .BLAHDEBLAH appears to be in Apple II Pascal format.
Installing “File System: Pascal FST” (using the Installer) allows GS/OS to
read this disk.

System 6.0 Toolbox 137 29/10/y

The disk in device .BLAHDEBLAH appears to be in Macintosh MFS
format. System 6.0 cannot read MFS disks, but it can use the newer HFS
format.

The disk in device .BLAHDEBLAH appears to be in HFS format. Installing
“File System: HFS FST” (using the Installer) allows GS/OS to use this
disk. HFS is used widely on the Macintosh.

The disk in device .BLAHDEBLAH appears to be in MS-DOS format. An
MS-DOS File System Translator is required to use this disk.

The disk in device .BLAHDEBLAH appears to be in Apple II DOS 3.3
format. Installing “File System: DOS 3.3 FST” (using the Installer) allows
GS/OS to read this disk.

The disk in device .BLAHDEBLAH appears to be in Apple II DOS 3.3
format. The DOS 3.3 File System Translator in System 6.0 only works
with 5.25" disks.

The disk in device .BLAHDEBLAH appears to be in High Sierra format.
Installing “Drive: CD-ROM” (using the Installer) allows GS/OS to use this
disk.

The disk in device .BLAHDEBLAH appears to be in ISO 9660 format.
Installing “Drive: CD-ROM” (using the Installer) allows GS/OS to read this
disk.

The disk in device .BLAHDEBLAH appears to be in ProDOS format.
Installing the ProDOS File System Translator allows GS/OS to read this
disk.

Example

Many applications will simply call HandleDiskInsert each time through the main
event loop, passing flags = $C000 (do scanning and handle inserts), devNum = 0, and
ignoring resultDevNum and resultFlags.

System 6.0 Toolbox 138 29/10/y

MWGetCtlPart $650E

Returns the part code from any TrackControl call made by the most recent
DoModalWindow call. (If DoModalWindow did not call TrackControl on the
most recent call, then MWGetCtlPart returns zero.)

Note: MWGetCtlPart is very similar to the fmdGetCtlPart call in the DTS

Libraries and Tools. See the section For fakeModalDialog Users earlier in this
chapter.

Parameters

Stack before call

Previous contents
Space

 <—SP

Stack after call

Previous contents
ctlPart

 <—SP

Errors none

C extern pascal Word MWGetCtlPart();

System 6.0 Toolbox 139 29/10/y

MWSetMenuProc $660E

Note: MWSetMenuProc is a combination of the fmdSetMenuProc and

fmdGetMenuProc calls in the DTS Libraries and Tools. See the section For
fakeModalDialog Users earlier in this chapter.

MWSetMenuProc informs DoModalWindow of the address of a routine to be called
when the frontmost window changes inside a DoModalWindow call. Since
DoModalWindow can allow you to have both menus and desk accessory windows
enabled, there may be menu items which should be enabled for your modal window and
disabled for desk accessory windows. If this address is not NIL, DoModalWindow calls
the procedure at this address whenever the frontmost window changes, giving your
application the chance to change the state of menu items to reflect the new frontmost
window.

Note: MWSetMenuProc is a combination of the fmdSetMenuProc and

fmdGetMenuProc calls from the DTS Libraries and Tools. See the section For
fakeModalDialog Users earlier in this chapter.

If you pass $FFFFFFFF (-1) for newMenuProc, then the menu proc is left unchanged,
and MWSetMenuProc simply returns the address of the current menu proc.

NDA Note: If an NDA sets the menu proc, it must restore the old value before

returning control to the application.

Parameters

Stack before call

Previous contents
Space

newMenuProc

 <—SP

Stack after call

Previous contents
oldMenuProc

 <—SP

Errors none

C extern pascal VoidProcPtr MWSetMenuProc(newMenuProc);
 VoidProcPtr newMenuProc;

System 6.0 Toolbox 140 29/10/y

MWSetUpEditMenu $680E

Note: MWSetUpEditMenu is very similar to the fmdEditMenu call in the DTS

Libraries and Tools. See the section For fakeModalDialog Users earlier in this
chapter.

Sets the sate of the standard emenu items (Undo, Cut, Copy, Paste, Clear, and Close)
based on the frontmost window.

If the frontmost window is a desk accessory window, MWSetUpEditMenu enables
Undo, Cut, Copy, Paste, Clear, and Close. If the frontmost window is not a desk
accessory window, MWSetUpEditMenu enables and disables items based on the target
control in the window.

If the current target control is an Edit Line control, MWSetUpEditMenu enables Cut,
Copy, and Clear if any text is selected. Paste is also enabled if a text scrap longer than
zero bytes exists.

If the current target control is an editable Text Edit control, MWSetUpEditMenu
enables cut, copy, and clear. Paste is also enabled if a text scrap longer than zero bytes
exists.

If the current target control is a read-only Text Edit control, MWSetUpEditMenu
enables Copy but disables Cut, Paste, and Clear.

In all other cases, MWSetUpEditMenu disables cut, copy, paste, and clear.

Parameters The stack is not affected by this call. There are no input or output

parameters.

Errors none

C extern pascal void MWSetUpEditMenu();

System 6.0 Toolbox 141 29/10/y

MWStdDrawProc $670E

Note: MWStdDrawProc is very similar to the fmdStdDrawProc call in the DTS

Libraries and Tools. See the section For fakeModalDialog Users earlier in this
chapter.

MWStdDrawProc is what DoModalWindow calls to update a modal window if you do
not supply your own update procedure.

If you do provide your own update procedure, it may be convenient to call
MWStdDrawProc from there, in addition to whatever else your procedure does.

MWStdDrawProc calls DrawControls on the window which is the current port, and it
also draws an “alert frame” inside the window if necessary (if the window frame’s
fAlert bit is clear and its fFlex bit is set).

MWStdDrawProc draws in the current port, which must be a window.

Parameters The stack is not affected by this call. There are no input or output

parameters.

Errors none

C extern pascal void MWStdDrawProc();

System 6.0 Toolbox 142 29/10/y

ResizeInfoBar $6A0E

Sets the vertical size of a standard window’s information bar. (Do not use this call with
custom windows.)

Parameters

Stack before call

Previous contents
flags

newSize

windPtr

 <—SP

Stack after call

Previous contents
 <—SP

Errors none

C extern pascal void ResizeInfoBar(flags, newHeight, windPtr)
 Integer flags;
 Integer newHeight;
 WindowPtr windPtr;

System 6.0 Toolbox 143 29/10/y

Appendix A—ToStrip and ToBusyStrip vectors

(These aren’t particularly new, but they weren’t documented before.)

These two vectors are for tool sets to jump to when a System Tool or User Tool function
exits.

ToBusyStrip $E10180
ToStrip $E10184

Inputs: X = error code (0 if no error)
 Y = number of bytes of input parameters to strip

Set up the registers and jump to ToStrip. It shifts the 6 bytes of RTL addresses up by
Y bytes, sets up A and the carry appropriately, and returns to whoever called the tool.

If the scheduler BUSY flag needs to be decremented, jump to ToBusyStrip instead of
ToStrip.

System 6.0 Toolbox 144 29/10/y

Appendix B—Battery RAM Use

New Battery RAM locations are documented here. Most applications have no need for
this information.

Remember that all of Battery RAM belongs to the system, and that not all system uses of
Battery RAM are documented.

$5A Key Translation setting

Use GetKeyTranslation and SetKeyTranslation in the Event
Manager to examine and modify this setting.

$5B CloseView settings:
 cvPowerMask equ %00001111 ; bits 0-3 (magnification)
 cvUseKeys equ %00010000 ; bit 4
 cvMagnify equ %00100000 ; bit 5
 cvInvert equ %01000000 ; bit 6
 cvEnabled equ %10000000 ; bit 7

$5E Applications and Utilities Group settings
 bit 0 set means no closed captioning (“visual indication of sounds”)
 bit 1 set means standard time, clear if daylight savings time
 bit 2 set means not to have auto daylight savings; clear means to have auto
daylight savings
 bit 4-3 = amount of menu item blink (0..3)

$5F Miscalleneous Toolbox settings
 bits 7-6: byte validity check (%10 if the byte has been initialized)
 bits 5-3: reserved, should be zero
 bit 2: 1 = no QD scanline interrupts (QDStartUp does SetIntUse(0))
 bit 1: 1 = no ShowBootInfo icons
 bit 0: 1 = alphabetize desk accessory lists

$60 Toolbox: WaitUntil scaling (see Miscellaneous Tools)

$61 Reserved for network medium selection

$62 Specifies OS for network boot (1=GS/OS, 2=ProDOS 8)

